
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=$
A. 0
B. 1
C. -1
D. None of these
Answer
586.8k+ views
Hint: Here we use the basic trigonometric ratios to find the required value. Remember basic trigonometric values.
$\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$
Complete step-by-step answer:
We have to find the value of $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o$.
As we know, $\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$, thus, putting these values in the above equation, we get,
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o= 2\times \dfrac{1}{2}+2\times 1 -3\times \dfrac{1}{2}-\left(\dfrac{\sqrt3}{2}\right)^2$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=1+2-\dfrac{3}{2}-\dfrac{3}{4}$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =3-\dfrac{3}{2}-\dfrac{3}{4}$
Taking LCM in the denominator to simplify, we get,
$2\sin 30^o +2\tan 45^o – 3\cos 60^o -\cos^2 30^o = \dfrac{3\times 4-3\times 2 -3}{4}$
$\implies 2 \sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =\dfrac{12-6-3}{4}=\dfrac{3}{4}$
Thus, $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o = \dfrac{3}{4}$
Hence, option D is correct.
Note: In this type of questions, we just need to put the values of the basic trigonometric ratios being asked and then simplify the equation in order to find the required value.
$\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$
Complete step-by-step answer:
We have to find the value of $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o$.
As we know, $\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$, thus, putting these values in the above equation, we get,
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o= 2\times \dfrac{1}{2}+2\times 1 -3\times \dfrac{1}{2}-\left(\dfrac{\sqrt3}{2}\right)^2$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=1+2-\dfrac{3}{2}-\dfrac{3}{4}$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =3-\dfrac{3}{2}-\dfrac{3}{4}$
Taking LCM in the denominator to simplify, we get,
$2\sin 30^o +2\tan 45^o – 3\cos 60^o -\cos^2 30^o = \dfrac{3\times 4-3\times 2 -3}{4}$
$\implies 2 \sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =\dfrac{12-6-3}{4}=\dfrac{3}{4}$
Thus, $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o = \dfrac{3}{4}$
Hence, option D is correct.
Note: In this type of questions, we just need to put the values of the basic trigonometric ratios being asked and then simplify the equation in order to find the required value.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

