
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=$
A. 0
B. 1
C. -1
D. None of these
Answer
575.7k+ views
Hint: Here we use the basic trigonometric ratios to find the required value. Remember basic trigonometric values.
$\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$
Complete step-by-step answer:
We have to find the value of $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o$.
As we know, $\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$, thus, putting these values in the above equation, we get,
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o= 2\times \dfrac{1}{2}+2\times 1 -3\times \dfrac{1}{2}-\left(\dfrac{\sqrt3}{2}\right)^2$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=1+2-\dfrac{3}{2}-\dfrac{3}{4}$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =3-\dfrac{3}{2}-\dfrac{3}{4}$
Taking LCM in the denominator to simplify, we get,
$2\sin 30^o +2\tan 45^o – 3\cos 60^o -\cos^2 30^o = \dfrac{3\times 4-3\times 2 -3}{4}$
$\implies 2 \sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =\dfrac{12-6-3}{4}=\dfrac{3}{4}$
Thus, $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o = \dfrac{3}{4}$
Hence, option D is correct.
Note: In this type of questions, we just need to put the values of the basic trigonometric ratios being asked and then simplify the equation in order to find the required value.
$\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$
Complete step-by-step answer:
We have to find the value of $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o$.
As we know, $\sin 30^o =\dfrac{1}{2}, \tan 45^o =1, \cos 60^o =\dfrac{1}{2}, \cos 30^o =\dfrac{\sqrt3}{2}$, thus, putting these values in the above equation, we get,
$2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o= 2\times \dfrac{1}{2}+2\times 1 -3\times \dfrac{1}{2}-\left(\dfrac{\sqrt3}{2}\right)^2$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=1+2-\dfrac{3}{2}-\dfrac{3}{4}$
$\implies 2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =3-\dfrac{3}{2}-\dfrac{3}{4}$
Taking LCM in the denominator to simplify, we get,
$2\sin 30^o +2\tan 45^o – 3\cos 60^o -\cos^2 30^o = \dfrac{3\times 4-3\times 2 -3}{4}$
$\implies 2 \sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o =\dfrac{12-6-3}{4}=\dfrac{3}{4}$
Thus, $2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o = \dfrac{3}{4}$
Hence, option D is correct.
Note: In this type of questions, we just need to put the values of the basic trigonometric ratios being asked and then simplify the equation in order to find the required value.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

