
\[{\text{2}}{\text{.5 mL}}\] of \[\dfrac{2}{5}{\text{M}}\] weak monoacidic base ( \[{K_b} = 1 \times {10^{ - 12}}\] at \[{\text{2}}{{\text{5}}^o}{\text{C}}\]) is titrated with \[\dfrac{2}{15}\] M HCl in water at \[{\text{2}}{{\text{5}}^o}{\text{C}}\] .
The concentration of $H^+$ at equivalence point is:
\[k_w=1 \times10^{-14} \;at \;25^0C\]
(A) \[3.7 \times {10^{ - 13}}M\]
(B) \[3.2 \times {10^{ - 7}}M\]
(C) \[3.2 \times {10^{ - 2}}M\]
(D) \[2.7 \times {10^{ - 2}}M\]
Answer
583.5k+ views
Hint: Write the expression for the hydrolysis of cation of the salt at the equivalence point. Use the expression for the acid dissociation constant of conjugate acid of base and calculate the degree of hydrolysis. Calculate the hydrogen ion concentration from the degree of hydrolysis and salt concentration.
Complete step by step answer:
Let \[{\text{BOH}}\] represent the weak monoacidic base.
Write balanced acid base neutralization reaction.
\[{\text{BOH +HCl }} \to {\text{ BCl + }}{{\text{H}}_2}{\text{O}}\]
Calculate the volume of \[{\text{HCl}}\] needed to reach the equivalence point.
\[{{\text{V}}_{{\text{HCl}}}}{\text{ = }}\dfrac{{{{\text{M}}_{{\text{BOH}}}}{\text{ }} \times {\text{ }}{{\text{V}}_{{\text{BOH}}}}}}{{{{\text{M}}_{{\text{HCl}}}}}}{\text{ }} \\
{{\text{V}}_{{\text{HCl}}}}{\text{ = }}\dfrac{{\dfrac{2}{5}{\text{M}} \times {\text{2}}{\text{.5 mL}}}}{{\dfrac{2}{{15}}{\text{M}}}} \\
{{\text{V}}_{{\text{HCl}}}} = 7.5{\text{ mL}} \\\]
Calculate the concentration of the salt at the equivalence point:
\[\left[ {{\text{BOH}}} \right]{\text{ = }}\dfrac{{\dfrac{2}{5}{\text{M}} \times {\text{2}}{\text{.5 mL}}}}{{7.5{\text{ mL}}}}{\text{ }} \\
\left[ {{\text{BOH}}} \right]{\text{ = 0}}{\text{.1 M}} \\\]
Consider hydrolysis of salt at the equivalence point:
\[{{\text{B}}^ + }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ BOH + }}{{\text{H}}^ + } \\
{\text{C}}\left( {1 - {\text{h}}} \right){\;\;\;\;\;\;\;\;\;\;\text{ Ch}\;\;\;\;\;\;\;Ch} \\\]
\[{K_b} = 1 \times {10^{ - 12}}\]
\[{K_w} = 1 \times {10^{ - 14}}\]
Calculate \[{K_a}\]
\[{K_a}{\text{ = }}\dfrac{{{K_w}}}{{{K_b}}} = \dfrac{{1 \times {{10}^{ - 14}}}}{{1 \times {{10}^{ - 12}}}} = 1 \times {10^{ - 2}}\]
Calculate the degree of hydrolysis
\[{K_h}{\text{ = }}\dfrac{{\left[ {{\text{BOH}}} \right] \times \left[ {{{\text{H}}^ + }} \right]}}{{\left[ {{{\text{B}}^ + }} \right]}} \\
1 \times {10^{ - 2}} = \dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{{\text{C}}\left( {1 - {\text{h}}} \right)}} \approx\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{\text{C}}}{\text{ = C}}{{\text{h}}^2}{\text{ as h <<< 1}} \\
1 \times {10^{ - 2}}{\text{ = }}\left( {{\text{0}}{\text{.1 M}}} \right){{\text{h}}^2} \\
{\text{h}} = 0.27\;{\text{M}} \\\]
Calculate hydronium ion concentration
\[\left[ {{{\text{H}}^ + }} \right]{\text{ = Ch}} = {\text{0}}{\text{.1 }}\times0.27 = 2.7{\kern 1pt} \times {10^{ - 2}}{\text{M}}\]
Hence, the hydrogen ion concentration at the equivalence point is \[2.7 \times {10^{ - 2}}M\]
Hence, the correct option is the option (D).
Note: The approximation \[\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{{\text{C}}\left( {1 - {\text{h}}} \right)}} \approx\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{\text{C}}}\] can be used because \[{\text{h <<< 1}}\] . This is because \[{K_h}\] has small value.
Complete step by step answer:
Let \[{\text{BOH}}\] represent the weak monoacidic base.
Write balanced acid base neutralization reaction.
\[{\text{BOH +HCl }} \to {\text{ BCl + }}{{\text{H}}_2}{\text{O}}\]
Calculate the volume of \[{\text{HCl}}\] needed to reach the equivalence point.
\[{{\text{V}}_{{\text{HCl}}}}{\text{ = }}\dfrac{{{{\text{M}}_{{\text{BOH}}}}{\text{ }} \times {\text{ }}{{\text{V}}_{{\text{BOH}}}}}}{{{{\text{M}}_{{\text{HCl}}}}}}{\text{ }} \\
{{\text{V}}_{{\text{HCl}}}}{\text{ = }}\dfrac{{\dfrac{2}{5}{\text{M}} \times {\text{2}}{\text{.5 mL}}}}{{\dfrac{2}{{15}}{\text{M}}}} \\
{{\text{V}}_{{\text{HCl}}}} = 7.5{\text{ mL}} \\\]
Calculate the concentration of the salt at the equivalence point:
\[\left[ {{\text{BOH}}} \right]{\text{ = }}\dfrac{{\dfrac{2}{5}{\text{M}} \times {\text{2}}{\text{.5 mL}}}}{{7.5{\text{ mL}}}}{\text{ }} \\
\left[ {{\text{BOH}}} \right]{\text{ = 0}}{\text{.1 M}} \\\]
Consider hydrolysis of salt at the equivalence point:
\[{{\text{B}}^ + }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ BOH + }}{{\text{H}}^ + } \\
{\text{C}}\left( {1 - {\text{h}}} \right){\;\;\;\;\;\;\;\;\;\;\text{ Ch}\;\;\;\;\;\;\;Ch} \\\]
\[{K_b} = 1 \times {10^{ - 12}}\]
\[{K_w} = 1 \times {10^{ - 14}}\]
Calculate \[{K_a}\]
\[{K_a}{\text{ = }}\dfrac{{{K_w}}}{{{K_b}}} = \dfrac{{1 \times {{10}^{ - 14}}}}{{1 \times {{10}^{ - 12}}}} = 1 \times {10^{ - 2}}\]
Calculate the degree of hydrolysis
\[{K_h}{\text{ = }}\dfrac{{\left[ {{\text{BOH}}} \right] \times \left[ {{{\text{H}}^ + }} \right]}}{{\left[ {{{\text{B}}^ + }} \right]}} \\
1 \times {10^{ - 2}} = \dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{{\text{C}}\left( {1 - {\text{h}}} \right)}} \approx\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{\text{C}}}{\text{ = C}}{{\text{h}}^2}{\text{ as h <<< 1}} \\
1 \times {10^{ - 2}}{\text{ = }}\left( {{\text{0}}{\text{.1 M}}} \right){{\text{h}}^2} \\
{\text{h}} = 0.27\;{\text{M}} \\\]
Calculate hydronium ion concentration
\[\left[ {{{\text{H}}^ + }} \right]{\text{ = Ch}} = {\text{0}}{\text{.1 }}\times0.27 = 2.7{\kern 1pt} \times {10^{ - 2}}{\text{M}}\]
Hence, the hydrogen ion concentration at the equivalence point is \[2.7 \times {10^{ - 2}}M\]
Hence, the correct option is the option (D).
Note: The approximation \[\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{{\text{C}}\left( {1 - {\text{h}}} \right)}} \approx\dfrac{{{{\left( {{\text{Ch}}} \right)}^2}}}{{\text{C}}}\] can be used because \[{\text{h <<< 1}}\] . This is because \[{K_h}\] has small value.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

