
When 1g of anhydrous oxalic acid is burnt at 25$\circ$C, the amount of heat liberated is 2.835 kJ. $\Delta$H combustion is: (oxalic acid: C$_2$H$_2$O$_4$):
A.- -255.15 kJ
B.- -445.65 kJ
C.- -295.24 kJ
D.- -155.16 kJ
Answer
580.2k+ views
Hint: With the help of given data, we have to calculate the heat combusted by heating the oxalic acid. So, calculate the moles of oxalic acid, and with the help of the heat liberated, and moles, the required value can be attained.
Complete answer:
Now, first we will define the heat liberated, and the heat combustion.
We can say that when a chemical reaction takes place, and the amount of heat is absorbed, or we can say an endothermic reaction takes place.
Now, the other term is the heat of combustion; from the name itself we can say heat released on combustion, or heating the substance.
We have to calculate the amount of heat of combustion.
First, we will calculate the moles of oxalic acid. To calculate the moles of oxalic acid, let us know the molar mass of oxalic acid.
So, the molar mass of oxalic acid (C$_2$H$_2$O$_4$), it can be written as:
2(12) + 2(1) + 4(16) = 90
According to the question, 1 g of oxalic acid is used; so number of moles can be written as:
Number of moles = 1/90;
So, now we will calculate the heat of combustion by dividing the amount of heat liberated to that of the number of moles.
Thus, we can write it as:
$\Delta$H$_{comb}$ = -$\dfrac{heat liberated}{number of moles}$
So, now by substituting the values we get;
$\Delta$H$_{comb}$ = -$\dfrac{-2.835kJ}{1/90}$,
$\Delta$H$_{comb}$ = -255.15 kJ
Thus, in the end we can conclude that the heat of combustion for oxalic acid is -255.15 kJ.
Hence, the correct option is (A).
Note:
Don’t get confused why we put up the negative sign before the value of heat of combustion then we know that the energy is released in the process; it is an exothermic reaction. So, we have put up the negative sign.
Complete answer:
Now, first we will define the heat liberated, and the heat combustion.
We can say that when a chemical reaction takes place, and the amount of heat is absorbed, or we can say an endothermic reaction takes place.
Now, the other term is the heat of combustion; from the name itself we can say heat released on combustion, or heating the substance.
We have to calculate the amount of heat of combustion.
First, we will calculate the moles of oxalic acid. To calculate the moles of oxalic acid, let us know the molar mass of oxalic acid.
So, the molar mass of oxalic acid (C$_2$H$_2$O$_4$), it can be written as:
2(12) + 2(1) + 4(16) = 90
According to the question, 1 g of oxalic acid is used; so number of moles can be written as:
Number of moles = 1/90;
So, now we will calculate the heat of combustion by dividing the amount of heat liberated to that of the number of moles.
Thus, we can write it as:
$\Delta$H$_{comb}$ = -$\dfrac{heat liberated}{number of moles}$
So, now by substituting the values we get;
$\Delta$H$_{comb}$ = -$\dfrac{-2.835kJ}{1/90}$,
$\Delta$H$_{comb}$ = -255.15 kJ
Thus, in the end we can conclude that the heat of combustion for oxalic acid is -255.15 kJ.
Hence, the correct option is (A).
Note:
Don’t get confused why we put up the negative sign before the value of heat of combustion then we know that the energy is released in the process; it is an exothermic reaction. So, we have put up the negative sign.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

