
1 g magnesium atoms in vapour phase absorb 50 kJ of energy to convert all Mg into Mg ions. The energy absorbed is needed for the following changes:
$ {\text{Mg(g)}} \to {\text{M}}{{\text{g}}^{\text{ + }}}{{(g) + e; \Delta H = }}740{\text{ kJ mo}}{{\text{l}}^{{\text{ - 1}}}} $
$ {\text{M}}{{\text{g}}^{\text{ + }}}{\text{(g)}} \to {\text{M}}{{\text{g}}^{{\text{2 + }}}}{{(g) + e; \Delta H = 1450 kJ mo}}{{\text{l}}^{{\text{ - 1}}}} $
Find out the % of $ {\text{M}}{{\text{g}}^{\text{ + }}} $ and $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ in the final mixture.
(A) $ {{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 68}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 31}}{{.72\% }} $
(B) $ {{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 58}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 41}}{{.72\% }} $
(C) $ {{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 78}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 21}}{{.72\% }} $
(D) None of these
Answer
547.5k+ views
Hint: Magnesium is an element with symbol Mg and its atomic number is twelve. It is an element of group 2 that is of alkaline earth metals. It possesses the rank ninth among the most abundant elements in the universe.
The following formula is used to find the number of moles,
$ {\text{Moles = }}\dfrac{{{\text{Given weight}}}}{{{\text{Molecular weight}}}} $
Complete Step by step solution:
The given weight of magnesium is 1 g. The atomic weight of magnesium is twenty-four. In order to calculate the moles of magnesium, the formula to be used is as follows,
$ {\text{Moles of magnesium = }}\dfrac{{{\text{Given weight of magnesium}}}}{{{\text{Molecular weight of magnesium}}}}{\text{ = }}\dfrac{1}{{24}} $ moles
$ \dfrac{1}{{24}} $ of magnesium gets converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ and $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ .
Let the moles of magnesium converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ be x.
Let the moles of magnesium converted into $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ be y.
The total moles including $ {\text{M}}{{\text{g}}^{\text{ + }}} $ and $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ \dfrac{1}{{24}} $ moles.
Therefore, $ x + y = \dfrac{1}{{24}} $ …(i)
Also, as magnesium gets converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ , 740 kJ of energy is consumed and when it transforms to $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ , 1450 kJ of energy is used. But magnesium atoms absorb only 50 kJ of energy to convert all Mg into Mg ions. Hence the equation obtained is as follows,
$ 50{\text{ }} = {\text{ }}740x{\text{ }} + {\text{ }}2190y $ …(ii)
From equations (i) and (ii), we get the values of x and y as,
x = $ 2.845 \times {10^{ - 2}} $
y = $ 1.322 \times {10^{ - 2}} $
Hence the moles of $ {\text{M}}{{\text{g}}^{\text{ + }}} $ is $ 2.845 \times {10^{ - 2}} $ and the moles of $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ 1.322 \times {10^{ - 2}} $ .
$ {\text{The percent of M}}{{\text{g}}^ + }{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^ + }}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{2.845 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 68}}{{.28\% }} $
Thus, the percent of $ {\text{M}}{{\text{g}}^{\text{ + }}} $ is $ {\text{68}}{{.28\% }} $ .
$ {\text{The percent of M}}{{\text{g}}^{2 + }}{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^{2 + }}}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{1.322 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 31}}{{.72\% }} $
Thus, the percent of $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ {\text{31}}{{.72\% }} $ .
Hence, option A is correct.
Note:
After iron and aluminium, magnesium is the most commonly used metal. In super strong, lightweight metals and alloys, magnesium is used. Alloys are mixtures of metals in definite proportion.
The following formula is used to find the number of moles,
$ {\text{Moles = }}\dfrac{{{\text{Given weight}}}}{{{\text{Molecular weight}}}} $
Complete Step by step solution:
The given weight of magnesium is 1 g. The atomic weight of magnesium is twenty-four. In order to calculate the moles of magnesium, the formula to be used is as follows,
$ {\text{Moles of magnesium = }}\dfrac{{{\text{Given weight of magnesium}}}}{{{\text{Molecular weight of magnesium}}}}{\text{ = }}\dfrac{1}{{24}} $ moles
$ \dfrac{1}{{24}} $ of magnesium gets converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ and $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ .
Let the moles of magnesium converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ be x.
Let the moles of magnesium converted into $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ be y.
The total moles including $ {\text{M}}{{\text{g}}^{\text{ + }}} $ and $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ \dfrac{1}{{24}} $ moles.
Therefore, $ x + y = \dfrac{1}{{24}} $ …(i)
Also, as magnesium gets converted into $ {\text{M}}{{\text{g}}^{\text{ + }}} $ , 740 kJ of energy is consumed and when it transforms to $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ , 1450 kJ of energy is used. But magnesium atoms absorb only 50 kJ of energy to convert all Mg into Mg ions. Hence the equation obtained is as follows,
$ 50{\text{ }} = {\text{ }}740x{\text{ }} + {\text{ }}2190y $ …(ii)
From equations (i) and (ii), we get the values of x and y as,
x = $ 2.845 \times {10^{ - 2}} $
y = $ 1.322 \times {10^{ - 2}} $
Hence the moles of $ {\text{M}}{{\text{g}}^{\text{ + }}} $ is $ 2.845 \times {10^{ - 2}} $ and the moles of $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ 1.322 \times {10^{ - 2}} $ .
$ {\text{The percent of M}}{{\text{g}}^ + }{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^ + }}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{2.845 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 68}}{{.28\% }} $
Thus, the percent of $ {\text{M}}{{\text{g}}^{\text{ + }}} $ is $ {\text{68}}{{.28\% }} $ .
$ {\text{The percent of M}}{{\text{g}}^{2 + }}{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^{2 + }}}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{1.322 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 31}}{{.72\% }} $
Thus, the percent of $ {\text{M}}{{\text{g}}^{{\text{2 + }}}} $ is $ {\text{31}}{{.72\% }} $ .
Hence, option A is correct.
Note:
After iron and aluminium, magnesium is the most commonly used metal. In super strong, lightweight metals and alloys, magnesium is used. Alloys are mixtures of metals in definite proportion.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

