
1. Find: - (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\] (ii) \[{{32}^{\dfrac{1}{5}}}\] (iii) \[{{125}^{\dfrac{1}{3}}}\]
2. Find: - (i) \[{{9}^{\dfrac{3}{2}}}\] (ii) \[{{32}^{\dfrac{2}{5}}}\] (iii) \[{{16}^{\dfrac{3}{4}}}\]
3. Simplify: - (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\] (ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\] (iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Answer
567.3k+ views
Hint: For part (1) and (2) of the given question, first break the bases of the expressions into prime factors and then apply the formula \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] to simplify them. For part (3), apply the formulas: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}},\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\] and \[{{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}\] to solve the three questions.
Complete step by step answer:
Here, we have been provided with several questions of the topic ‘exponents and powers’ and we have to simplify them. So, let us check each part one – by – one.
(1). (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\]
Now, 64 can be written as: - 64 = 2 \[\times \] 2 \[\times \]2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 6 times, so we can write \[64={{2}^{6}}\]. Therefore, we have,
\[\Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}\]
Applying the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{6\times \dfrac{1}{2}}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{3}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}=2\times 2\times 2=8 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{1}{5}}}\]
Now, 32 can be written as: - 32 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2 \[\times \]2. Here, 2 is multiplied 5 times, so we can write \[32={{2}^{5}}\]. Therefore, we have,
\[\Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{1}{5}}}\]
\[\begin{align}
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{5\times \dfrac{1}{5}}} \\
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{1}}=2 \\
\end{align}\]
(iii) \[{{\left( 125 \right)}^{\dfrac{1}{3}}}\]
Now, 125 can be written as: - 125 = 5 \[\times \] 5 \[\times \] 5. Here, 5 is multiplied 3 times, so we can write \[125={{5}^{3}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{\left( {{5}^{3}} \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{3\times \dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{1}}=5 \\
\end{align}\]
(2) (i) \[{{9}^{\dfrac{3}{2}}}\]
Now, 9 can be written as: - 9 = 3 \[\times \] 3. Here, 3 is multiplied 2 times, so we can write \[9={{3}^{2}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{2\times \dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{3}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}=3\times 3\times 3=27 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{2}{5}}}\]
Now, from part (1) (ii) of the given solution above, we get,
\[\begin{align}
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{5\times \dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{2}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}=2\times 2=4 \\
\end{align}\]
(iii) \[{{16}^{\dfrac{3}{4}}}\]
Now, 16 can be written as: - 16 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 4 times, so we can write \[16={{2}^{4}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{\left( {{2}^{4}} \right)}^{\dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{4\times \dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{3}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}=2\times 2\times 2=8 \\
\end{align}\]
(3). (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\]
Here, we can see that the bases of the two terms multiplied above are the same, so applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get,
\[\begin{align}
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{2}{3}+\dfrac{1}{5}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{\left( 10+3 \right)}{15}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{13}{15}}} \\
\end{align}\]
(ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\]
Here, applying the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we get,
\[\Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{\left( {{3}^{-3}} \right)}^{7}}\]
Now, using the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{\left( -3 \right)\times 7}} \\
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{-21}}=\left( \dfrac{1}{{{3}^{21}}} \right) \\
\end{align}\]
(iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Here, we can see that the bases of the two terms divided above are the same, so applying the formula: - \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{2}-\dfrac{1}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{\left( 2-1 \right)}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{4}}} \\
\end{align}\]
Note:
One must remember all the basic formulas of the topic ‘exponents and powers’ like: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] to solve the above questions. You may note that it is necessary to break the bases of the given expressions into their product of primes. This is done to cancel the fractional powers wherever possible. We can also solve all the questions using logarithm but it is used in higher classes and for some difficult calculations, so in the above questions it is advisable to use the formulas of the topic ‘exponents and powers’.
Complete step by step answer:
Here, we have been provided with several questions of the topic ‘exponents and powers’ and we have to simplify them. So, let us check each part one – by – one.
(1). (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\]
Now, 64 can be written as: - 64 = 2 \[\times \] 2 \[\times \]2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 6 times, so we can write \[64={{2}^{6}}\]. Therefore, we have,
\[\Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}\]
Applying the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{6\times \dfrac{1}{2}}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{3}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}=2\times 2\times 2=8 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{1}{5}}}\]
Now, 32 can be written as: - 32 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2 \[\times \]2. Here, 2 is multiplied 5 times, so we can write \[32={{2}^{5}}\]. Therefore, we have,
\[\Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{1}{5}}}\]
\[\begin{align}
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{5\times \dfrac{1}{5}}} \\
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{1}}=2 \\
\end{align}\]
(iii) \[{{\left( 125 \right)}^{\dfrac{1}{3}}}\]
Now, 125 can be written as: - 125 = 5 \[\times \] 5 \[\times \] 5. Here, 5 is multiplied 3 times, so we can write \[125={{5}^{3}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{\left( {{5}^{3}} \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{3\times \dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{1}}=5 \\
\end{align}\]
(2) (i) \[{{9}^{\dfrac{3}{2}}}\]
Now, 9 can be written as: - 9 = 3 \[\times \] 3. Here, 3 is multiplied 2 times, so we can write \[9={{3}^{2}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{2\times \dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{3}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}=3\times 3\times 3=27 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{2}{5}}}\]
Now, from part (1) (ii) of the given solution above, we get,
\[\begin{align}
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{5\times \dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{2}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}=2\times 2=4 \\
\end{align}\]
(iii) \[{{16}^{\dfrac{3}{4}}}\]
Now, 16 can be written as: - 16 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 4 times, so we can write \[16={{2}^{4}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{\left( {{2}^{4}} \right)}^{\dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{4\times \dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{3}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}=2\times 2\times 2=8 \\
\end{align}\]
(3). (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\]
Here, we can see that the bases of the two terms multiplied above are the same, so applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get,
\[\begin{align}
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{2}{3}+\dfrac{1}{5}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{\left( 10+3 \right)}{15}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{13}{15}}} \\
\end{align}\]
(ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\]
Here, applying the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we get,
\[\Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{\left( {{3}^{-3}} \right)}^{7}}\]
Now, using the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{\left( -3 \right)\times 7}} \\
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{-21}}=\left( \dfrac{1}{{{3}^{21}}} \right) \\
\end{align}\]
(iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Here, we can see that the bases of the two terms divided above are the same, so applying the formula: - \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{2}-\dfrac{1}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{\left( 2-1 \right)}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{4}}} \\
\end{align}\]
Note:
One must remember all the basic formulas of the topic ‘exponents and powers’ like: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] to solve the above questions. You may note that it is necessary to break the bases of the given expressions into their product of primes. This is done to cancel the fractional powers wherever possible. We can also solve all the questions using logarithm but it is used in higher classes and for some difficult calculations, so in the above questions it is advisable to use the formulas of the topic ‘exponents and powers’.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

