
1. Find: - (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\] (ii) \[{{32}^{\dfrac{1}{5}}}\] (iii) \[{{125}^{\dfrac{1}{3}}}\]
2. Find: - (i) \[{{9}^{\dfrac{3}{2}}}\] (ii) \[{{32}^{\dfrac{2}{5}}}\] (iii) \[{{16}^{\dfrac{3}{4}}}\]
3. Simplify: - (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\] (ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\] (iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Answer
502.8k+ views
Hint: For part (1) and (2) of the given question, first break the bases of the expressions into prime factors and then apply the formula \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] to simplify them. For part (3), apply the formulas: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}},\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\] and \[{{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}\] to solve the three questions.
Complete step by step answer:
Here, we have been provided with several questions of the topic ‘exponents and powers’ and we have to simplify them. So, let us check each part one – by – one.
(1). (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\]
Now, 64 can be written as: - 64 = 2 \[\times \] 2 \[\times \]2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 6 times, so we can write \[64={{2}^{6}}\]. Therefore, we have,
\[\Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}\]
Applying the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{6\times \dfrac{1}{2}}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{3}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}=2\times 2\times 2=8 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{1}{5}}}\]
Now, 32 can be written as: - 32 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2 \[\times \]2. Here, 2 is multiplied 5 times, so we can write \[32={{2}^{5}}\]. Therefore, we have,
\[\Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{1}{5}}}\]
\[\begin{align}
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{5\times \dfrac{1}{5}}} \\
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{1}}=2 \\
\end{align}\]
(iii) \[{{\left( 125 \right)}^{\dfrac{1}{3}}}\]
Now, 125 can be written as: - 125 = 5 \[\times \] 5 \[\times \] 5. Here, 5 is multiplied 3 times, so we can write \[125={{5}^{3}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{\left( {{5}^{3}} \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{3\times \dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{1}}=5 \\
\end{align}\]
(2) (i) \[{{9}^{\dfrac{3}{2}}}\]
Now, 9 can be written as: - 9 = 3 \[\times \] 3. Here, 3 is multiplied 2 times, so we can write \[9={{3}^{2}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{2\times \dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{3}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}=3\times 3\times 3=27 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{2}{5}}}\]
Now, from part (1) (ii) of the given solution above, we get,
\[\begin{align}
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{5\times \dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{2}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}=2\times 2=4 \\
\end{align}\]
(iii) \[{{16}^{\dfrac{3}{4}}}\]
Now, 16 can be written as: - 16 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 4 times, so we can write \[16={{2}^{4}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{\left( {{2}^{4}} \right)}^{\dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{4\times \dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{3}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}=2\times 2\times 2=8 \\
\end{align}\]
(3). (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\]
Here, we can see that the bases of the two terms multiplied above are the same, so applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get,
\[\begin{align}
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{2}{3}+\dfrac{1}{5}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{\left( 10+3 \right)}{15}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{13}{15}}} \\
\end{align}\]
(ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\]
Here, applying the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we get,
\[\Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{\left( {{3}^{-3}} \right)}^{7}}\]
Now, using the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{\left( -3 \right)\times 7}} \\
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{-21}}=\left( \dfrac{1}{{{3}^{21}}} \right) \\
\end{align}\]
(iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Here, we can see that the bases of the two terms divided above are the same, so applying the formula: - \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{2}-\dfrac{1}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{\left( 2-1 \right)}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{4}}} \\
\end{align}\]
Note:
One must remember all the basic formulas of the topic ‘exponents and powers’ like: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] to solve the above questions. You may note that it is necessary to break the bases of the given expressions into their product of primes. This is done to cancel the fractional powers wherever possible. We can also solve all the questions using logarithm but it is used in higher classes and for some difficult calculations, so in the above questions it is advisable to use the formulas of the topic ‘exponents and powers’.
Complete step by step answer:
Here, we have been provided with several questions of the topic ‘exponents and powers’ and we have to simplify them. So, let us check each part one – by – one.
(1). (i) \[{{\left( 64 \right)}^{\dfrac{1}{2}}}\]
Now, 64 can be written as: - 64 = 2 \[\times \] 2 \[\times \]2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 6 times, so we can write \[64={{2}^{6}}\]. Therefore, we have,
\[\Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}\]
Applying the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{6\times \dfrac{1}{2}}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}={{2}^{3}} \\
& \Rightarrow {{\left( 64 \right)}^{\dfrac{1}{2}}}=2\times 2\times 2=8 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{1}{5}}}\]
Now, 32 can be written as: - 32 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2 \[\times \]2. Here, 2 is multiplied 5 times, so we can write \[32={{2}^{5}}\]. Therefore, we have,
\[\Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{1}{5}}}\]
\[\begin{align}
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{5\times \dfrac{1}{5}}} \\
& \Rightarrow {{\left( 32 \right)}^{\dfrac{1}{5}}}={{2}^{1}}=2 \\
\end{align}\]
(iii) \[{{\left( 125 \right)}^{\dfrac{1}{3}}}\]
Now, 125 can be written as: - 125 = 5 \[\times \] 5 \[\times \] 5. Here, 5 is multiplied 3 times, so we can write \[125={{5}^{3}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{\left( {{5}^{3}} \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{3\times \dfrac{1}{3}}} \\
& \Rightarrow {{\left( 125 \right)}^{\dfrac{1}{3}}}={{5}^{1}}=5 \\
\end{align}\]
(2) (i) \[{{9}^{\dfrac{3}{2}}}\]
Now, 9 can be written as: - 9 = 3 \[\times \] 3. Here, 3 is multiplied 2 times, so we can write \[9={{3}^{2}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{2\times \dfrac{3}{2}}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}={{3}^{3}} \\
& \Rightarrow {{9}^{\dfrac{3}{2}}}=3\times 3\times 3=27 \\
\end{align}\]
(ii) \[{{32}^{\dfrac{2}{5}}}\]
Now, from part (1) (ii) of the given solution above, we get,
\[\begin{align}
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{\left( {{2}^{5}} \right)}^{\dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{5\times \dfrac{2}{5}}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}={{2}^{2}} \\
& \Rightarrow {{32}^{\dfrac{2}{5}}}=2\times 2=4 \\
\end{align}\]
(iii) \[{{16}^{\dfrac{3}{4}}}\]
Now, 16 can be written as: - 16 = 2 \[\times \] 2 \[\times \] 2 \[\times \] 2. Here, 2 is multiplied 4 times, so we can write \[16={{2}^{4}}\]. Therefore, we have,
\[\begin{align}
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{\left( {{2}^{4}} \right)}^{\dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{4\times \dfrac{3}{4}}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}={{2}^{3}} \\
& \Rightarrow {{\left( 16 \right)}^{\dfrac{3}{4}}}=2\times 2\times 2=8 \\
\end{align}\]
(3). (i) \[{{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}\]
Here, we can see that the bases of the two terms multiplied above are the same, so applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get,
\[\begin{align}
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{2}{3}+\dfrac{1}{5}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{\left( 10+3 \right)}{15}}} \\
& \Rightarrow {{2}^{\dfrac{2}{3}}}\times {{2}^{\dfrac{1}{5}}}={{2}^{\dfrac{13}{15}}} \\
\end{align}\]
(ii) \[{{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}\]
Here, applying the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we get,
\[\Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{\left( {{3}^{-3}} \right)}^{7}}\]
Now, using the identity: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{\left( -3 \right)\times 7}} \\
& \Rightarrow {{\left( \dfrac{1}{{{3}^{3}}} \right)}^{7}}={{3}^{-21}}=\left( \dfrac{1}{{{3}^{21}}} \right) \\
\end{align}\]
(iii) \[\dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}}\]
Here, we can see that the bases of the two terms divided above are the same, so applying the formula: - \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{2}-\dfrac{1}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{\left( 2-1 \right)}{4}}} \\
& \Rightarrow \left( \dfrac{{{11}^{\dfrac{1}{2}}}}{{{11}^{\dfrac{1}{4}}}} \right)={{11}^{\dfrac{1}{4}}} \\
\end{align}\]
Note:
One must remember all the basic formulas of the topic ‘exponents and powers’ like: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] to solve the above questions. You may note that it is necessary to break the bases of the given expressions into their product of primes. This is done to cancel the fractional powers wherever possible. We can also solve all the questions using logarithm but it is used in higher classes and for some difficult calculations, so in the above questions it is advisable to use the formulas of the topic ‘exponents and powers’.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a paragraph on any one of the following outlines class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which period in Medieval Western Europe is known as class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
