Answer
Verified
455.1k+ views
Hint: To solve the given equation we will first rationalize each of the terms given to us separately. After rationalizing each term we will find that the denominator of each term will become 1. Because the denominator becomes 1 we can write numerators separately.
After writing the numerator separately we will proceed accordingly and get the desired answer.
Complete step-by-step answer:
First, we will rationalize each term:
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})} $
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}\times \dfrac{(\sqrt{8}+\sqrt{7})}{(\sqrt{8}+\sqrt{7})}+ $
$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{(\sqrt{7}-\sqrt{6})}\times \dfrac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7}+\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}\times \dfrac{(\sqrt{6}+\sqrt{5})}{(\sqrt{6}+\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\times \dfrac{(\sqrt{5}+\sqrt{4})}{(\sqrt{5}+\sqrt{4})} $
$ $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{{{(\sqrt{9})}^{2}}-{{(\sqrt{8})}^{2}}}-\dfrac{(\sqrt{8}+\sqrt{7})}{{{(\sqrt{8})}^{2}}-{{(\sqrt{7})}^{2}}}+\dfrac{(\sqrt{7}+\sqrt{6})}{{{(\sqrt{7})}^{2}}-{{(\sqrt{6})}^{2}}}-\dfrac{(\sqrt{6}+\sqrt{5})}{{{(\sqrt{6})}^{2}}-{{(\sqrt{5})}^{2}}}+\dfrac{(\sqrt{5}+\sqrt{4})}{{{(\sqrt{5})}^{2}}-{{(\sqrt{4})}^{2}}} $
We used the formula \[(a+b)(a-b)=({{a}^{2}}-{{b}^{2}})\] and \[{{(\sqrt{a})}^{2}}=a\]
After rationalizing we will simplify:
$ \Rightarrow \dfrac{(\sqrt{9}+\sqrt{8})}{9-8}-\dfrac{(\sqrt{8}+\sqrt{7})}{8-7}+\dfrac{(\sqrt{7}+\sqrt{6})}{7-6}-\dfrac{(\sqrt{6}+\sqrt{5})}{6-5}+\dfrac{(\sqrt{5}+\sqrt{4})}{5-4} $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{1}-\dfrac{(\sqrt{8}+\sqrt{7})}{1}+\dfrac{(\sqrt{7}+\sqrt{6})}{1}-\dfrac{(\sqrt{6}+\sqrt{5})}{1}+\dfrac{(\sqrt{5}+\sqrt{4})}{1} $
$ \Rightarrow\sqrt{9}+\sqrt{8}-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+\sqrt{4}) $
$ \Rightarrow\sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4} $
$ \Rightarrow \sqrt{9}+\sqrt{4} $
$\Rightarrow 3+2=5\text{ }\!\![\!\!\text{ }\because \sqrt{9}=\sqrt{{{3}^{2}}}\text{=3; }\sqrt{4}=\sqrt{{{2}^{2}}}=2\text{ }\!\!]\!\!\text{ } $
We see that all the terms except for the first and last term get canceled.
Thus, the answer to the given expression will be yielded as options D. 5.
So, the correct answer is “Option D”.
Note: This type of similar question can be expressed in the way\[\dfrac{1}{(\sqrt{n}-\sqrt{n-1})}-\dfrac{1}{(\sqrt{n-1}-\sqrt{n-2})}.......+\dfrac{1}{(\sqrt{n-(1-x)}-\sqrt{n-x})}-\dfrac{1}{(\sqrt{n-x}-\sqrt{n-(x+1)})}\]
Where only the first and last term remains because there are no terms like\[\sqrt{n}\] and \[\sqrt{n-(x+1)}\]
Thus, the only general method of solving a similar type of sums is by rationalizing the denominator and proceeding with the question accordingly. Whenever there is\[(n+(n+1)\text{ }\!\![\!\!\text{ Example: 1+2 }\!\!]\!\!\text{ or }n+(n-1)\,\,\,\,\,\,\,\,\,\,[\text{Example: 4+3}]\text{ , etc)}\] type of equation or anything similar to it in the denominator we should try to bring these values to the denominator either by rationalization or any other method since this will decrease the difficulty of the calculations.
Be careful when opening the brackets after rationalization.
After writing the numerator separately we will proceed accordingly and get the desired answer.
Complete step-by-step answer:
First, we will rationalize each term:
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})} $
$\Rightarrow \dfrac{1}{(\sqrt{9}-\sqrt{8})}\times \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}+\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}\times \dfrac{(\sqrt{8}+\sqrt{7})}{(\sqrt{8}+\sqrt{7})}+ $
$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{(\sqrt{7}-\sqrt{6})}\times \dfrac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7}+\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}\times \dfrac{(\sqrt{6}+\sqrt{5})}{(\sqrt{6}+\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\times \dfrac{(\sqrt{5}+\sqrt{4})}{(\sqrt{5}+\sqrt{4})} $
$ $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{{{(\sqrt{9})}^{2}}-{{(\sqrt{8})}^{2}}}-\dfrac{(\sqrt{8}+\sqrt{7})}{{{(\sqrt{8})}^{2}}-{{(\sqrt{7})}^{2}}}+\dfrac{(\sqrt{7}+\sqrt{6})}{{{(\sqrt{7})}^{2}}-{{(\sqrt{6})}^{2}}}-\dfrac{(\sqrt{6}+\sqrt{5})}{{{(\sqrt{6})}^{2}}-{{(\sqrt{5})}^{2}}}+\dfrac{(\sqrt{5}+\sqrt{4})}{{{(\sqrt{5})}^{2}}-{{(\sqrt{4})}^{2}}} $
We used the formula \[(a+b)(a-b)=({{a}^{2}}-{{b}^{2}})\] and \[{{(\sqrt{a})}^{2}}=a\]
After rationalizing we will simplify:
$ \Rightarrow \dfrac{(\sqrt{9}+\sqrt{8})}{9-8}-\dfrac{(\sqrt{8}+\sqrt{7})}{8-7}+\dfrac{(\sqrt{7}+\sqrt{6})}{7-6}-\dfrac{(\sqrt{6}+\sqrt{5})}{6-5}+\dfrac{(\sqrt{5}+\sqrt{4})}{5-4} $
$ \Rightarrow\dfrac{(\sqrt{9}+\sqrt{8})}{1}-\dfrac{(\sqrt{8}+\sqrt{7})}{1}+\dfrac{(\sqrt{7}+\sqrt{6})}{1}-\dfrac{(\sqrt{6}+\sqrt{5})}{1}+\dfrac{(\sqrt{5}+\sqrt{4})}{1} $
$ \Rightarrow\sqrt{9}+\sqrt{8}-(\sqrt{8}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+\sqrt{4}) $
$ \Rightarrow\sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4} $
$ \Rightarrow \sqrt{9}+\sqrt{4} $
$\Rightarrow 3+2=5\text{ }\!\![\!\!\text{ }\because \sqrt{9}=\sqrt{{{3}^{2}}}\text{=3; }\sqrt{4}=\sqrt{{{2}^{2}}}=2\text{ }\!\!]\!\!\text{ } $
We see that all the terms except for the first and last term get canceled.
Thus, the answer to the given expression will be yielded as options D. 5.
So, the correct answer is “Option D”.
Note: This type of similar question can be expressed in the way\[\dfrac{1}{(\sqrt{n}-\sqrt{n-1})}-\dfrac{1}{(\sqrt{n-1}-\sqrt{n-2})}.......+\dfrac{1}{(\sqrt{n-(1-x)}-\sqrt{n-x})}-\dfrac{1}{(\sqrt{n-x}-\sqrt{n-(x+1)})}\]
Where only the first and last term remains because there are no terms like\[\sqrt{n}\] and \[\sqrt{n-(x+1)}\]
Thus, the only general method of solving a similar type of sums is by rationalizing the denominator and proceeding with the question accordingly. Whenever there is\[(n+(n+1)\text{ }\!\![\!\!\text{ Example: 1+2 }\!\!]\!\!\text{ or }n+(n-1)\,\,\,\,\,\,\,\,\,\,[\text{Example: 4+3}]\text{ , etc)}\] type of equation or anything similar to it in the denominator we should try to bring these values to the denominator either by rationalization or any other method since this will decrease the difficulty of the calculations.
Be careful when opening the brackets after rationalization.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE