
When x molecules are removed from 200 mg of ${N_2}O$, $2.89 \times {10^{ - 3}}$ moles of ${N_2}O$ are left in x will be
A. ${10^{20}}$ molecules
B. ${10^{10}}$ molecules
C. 21 molecules
D. ${10^{21}}$ molecules
Answer
600.3k+ views
Hint: - For solving these types of questions we must remember the molecular mass of the given compound. Also, we must know the definition and value of mole.
Complete answer:
Molecular mass of ${N_2}O$ = 44 and weight of ${N_2}O$= 200mg = 0.2g
Moles of ${N_2}O$ present = $\dfrac{{0.2}}{{44}}$= $4.55 \times {10^{ - 3}}$
Let moles of N₂O removed be $x$, therefore moles of ${N_2}O$ remained = $2.89 \times {10^{ - 3}}$moles
Thus $4.55 \times {10^{ - 3}}$- $x$= $2.89 \times {10^{ - 3}}$
$x$=$4.55 \times {10^{ - 3}}$- $2.89 \times {10^{ - 3}}$
$x$=$1.65 \times {10^{ - 3}}$mole
As we know in 1 mole there are $6.022 \times {10^{23}}$ molecules
Therefore, $1.65 \times {10^{ - 3}}$= $6.022 \times {10^{23}}$$ \times $ $1.65 \times {10^{ - 3}}$
$9.97 \times {10^{20}}$molecules
${10^{21}}$ molecules
Therefore, option D is the correct answer and when $x$ molecules are removed from 200 mg of${N_2}O$ moles of ${N_2}O$ left will be ${10^{21}}$ molecules.
Note: - In this question we saw the whole question was based on simple calculation but the values are very important. We must remember the value like in 1 mole there are $6.022 \times {10^{23}}$ molecules. This is very important.
Complete answer:
Molecular mass of ${N_2}O$ = 44 and weight of ${N_2}O$= 200mg = 0.2g
Moles of ${N_2}O$ present = $\dfrac{{0.2}}{{44}}$= $4.55 \times {10^{ - 3}}$
Let moles of N₂O removed be $x$, therefore moles of ${N_2}O$ remained = $2.89 \times {10^{ - 3}}$moles
Thus $4.55 \times {10^{ - 3}}$- $x$= $2.89 \times {10^{ - 3}}$
$x$=$4.55 \times {10^{ - 3}}$- $2.89 \times {10^{ - 3}}$
$x$=$1.65 \times {10^{ - 3}}$mole
As we know in 1 mole there are $6.022 \times {10^{23}}$ molecules
Therefore, $1.65 \times {10^{ - 3}}$= $6.022 \times {10^{23}}$$ \times $ $1.65 \times {10^{ - 3}}$
$9.97 \times {10^{20}}$molecules
${10^{21}}$ molecules
Therefore, option D is the correct answer and when $x$ molecules are removed from 200 mg of${N_2}O$ moles of ${N_2}O$ left will be ${10^{21}}$ molecules.
Note: - In this question we saw the whole question was based on simple calculation but the values are very important. We must remember the value like in 1 mole there are $6.022 \times {10^{23}}$ molecules. This is very important.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

