
Write the value of given inverse trigonometric function $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ .
Answer
607.5k+ views
Hint: For solving this question we will use two important trigonometric results. First, we will use the formula of the inverse trigonometric functions to write ${{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=-\dfrac{\pi }{6}$ in the given term. After that, we will use one of the basic formulas of trigonometric ratio, i.e. $\sin \dfrac{\pi }{2}=1$ for giving the final answer for the question correctly.
Complete step-by-step solution -
Given:
We have to find the value of the following:
$\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$
Now, we will simplify the term $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ and try to find its correct value.
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}....................\left( 1 \right) \\
& \sin \dfrac{\pi }{2}=1.................................\left( 2 \right) \\
\end{align}$
Now, we will use the above two formulas to solve this question.
We have, $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ .
Now, as we know that, ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)$ for $x\in \left[ -1,1 \right]$ and $-1<-\dfrac{1}{2}<1$ so, we can write ${{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ . Then,
$\begin{align}
& \sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}-\left( -{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right] \\
\end{align}$
Now, we will use the formula from the equation (1) to write ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$ in the term $\sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right]$ . Then,
$\begin{align}
& \sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}+\dfrac{\pi }{6} \right] \\
& \Rightarrow \sin \dfrac{\pi }{2} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin \dfrac{\pi }{2}=1$ in the above line. Then,
$\begin{align}
& \sin \dfrac{\pi }{2} \\
& \Rightarrow 1 \\
\end{align}$
Now, from the above result, we conclude that the value of the expression $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ will be equal to one. Then,
$\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]=1$
Thus, $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]=1$.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, though the question is easy, but we should apply the formulas of inverse trigonometric functions, for example: function $y={{\sin }^{-1}}x$ is defined for $x\in \left[ -1,1 \right]$ and its range is $y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ then, $y$ is the principal value of ${{\sin }^{-1}}x$ . Then, we should solve without any mathematical error and avoid making calculation mistakes while solving to get the correct answer.
Complete step-by-step solution -
Given:
We have to find the value of the following:
$\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$
Now, we will simplify the term $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ and try to find its correct value.
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}....................\left( 1 \right) \\
& \sin \dfrac{\pi }{2}=1.................................\left( 2 \right) \\
\end{align}$
Now, we will use the above two formulas to solve this question.
We have, $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ .
Now, as we know that, ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)$ for $x\in \left[ -1,1 \right]$ and $-1<-\dfrac{1}{2}<1$ so, we can write ${{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ . Then,
$\begin{align}
& \sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}-\left( -{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right] \\
\end{align}$
Now, we will use the formula from the equation (1) to write ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$ in the term $\sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right]$ . Then,
$\begin{align}
& \sin \left[ \dfrac{\pi }{3}+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right] \\
& \Rightarrow \sin \left[ \dfrac{\pi }{3}+\dfrac{\pi }{6} \right] \\
& \Rightarrow \sin \dfrac{\pi }{2} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin \dfrac{\pi }{2}=1$ in the above line. Then,
$\begin{align}
& \sin \dfrac{\pi }{2} \\
& \Rightarrow 1 \\
\end{align}$
Now, from the above result, we conclude that the value of the expression $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]$ will be equal to one. Then,
$\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]=1$
Thus, $\sin \left[ \dfrac{\pi }{3}-{{\sin }^{-1}}\left( -\dfrac{1}{2} \right) \right]=1$.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, though the question is easy, but we should apply the formulas of inverse trigonometric functions, for example: function $y={{\sin }^{-1}}x$ is defined for $x\in \left[ -1,1 \right]$ and its range is $y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ then, $y$ is the principal value of ${{\sin }^{-1}}x$ . Then, we should solve without any mathematical error and avoid making calculation mistakes while solving to get the correct answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

