
How do you write the quadratic equation \[y=3{{x}^{2}}-12x+4\] in vertex form?
Answer
563.7k+ views
Hint: Compare the given quadratic equation with the general form given as: - \[y=a{{x}^{2}}+bx+c\]. Find the respective values of a, b and c. Now, find the discriminant of the given quadratic equation by using the formula: - \[D={{b}^{2}}-4ac\], where ‘D’ is the notation for the discriminant. Now, use the relation: - \[y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\dfrac{D}{4{{a}^{2}}} \right]\] to write the quadratic equation in vertex form.
Complete step by step answer:
Here, we have been provided with the quadratic equation: - \[y=3{{x}^{2}}-12x+4\] and we are asked to write it in vertex form.
Now, we are going to use the method of completing the square to solve the question. This method states that if we have a quadratic equation of the form \[y=a{{x}^{2}}+bx+c\] then its vertex form is written as: - \[y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\dfrac{D}{4{{a}^{2}}} \right]\], where \[D={{b}^{2}}-4ac\], called the discriminant of the quadratic equation.
So, on comparing the given quadratic expression: - \[y=3{{x}^{2}}-12x+4\] with the general form given as: - \[y=a{{x}^{2}}+bx+c\], we can conclude that: -
\[\Rightarrow \] a = 3, b = -12 and c = 4
Applying the formula for discriminant of a quadratic equation given as: - \[D={{b}^{2}}-4ac\], where ‘D’ is the discriminant, we get,
\[\begin{align}
& \Rightarrow D={{\left( -12 \right)}^{2}}-4\times 3\times 4 \\
& \Rightarrow D=144-48 \\
& \Rightarrow D=96 \\
\end{align}\]
Now, \[y=a{{x}^{2}}+bx+c\] can be written as: -
\[\begin{align}
& \Rightarrow y=a\left( {{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a} \right) \\
& \Rightarrow y=a\left( {{x}^{2}}+2.\dfrac{b}{2a}x+{{\left( \dfrac{b}{2a} \right)}^{2}}-\dfrac{{{b}^{2}}}{{{\left( 2a \right)}^{2}}}+\dfrac{c}{a} \right) \\
\end{align}\]
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\left( \dfrac{{{b}^{2}}}{{{\left( 2a \right)}^{2}}}-\dfrac{c}{a} \right) \right]\]
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\left( \dfrac{{{b}^{2}}-4ac}{4{{a}^{2}}} \right) \right]\]
Substituting, \[{{b}^{2}}-4ac=0\], we get,
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\dfrac{D}{4{{a}^{2}}} \right]\]
So, we have derived a general form for the vertex representation of a quadratic expression. Therefore, for the expression: - \[y=3{{x}^{2}}-12x+4\], we have, substituting the values of a, b, c and D.
\[\begin{align}
& \Rightarrow y=3\left[ {{\left( x+\left( \dfrac{-12}{2\times 3} \right) \right)}^{2}}-\dfrac{96}{4\times {{\left( 3 \right)}^{2}}} \right] \\
& \Rightarrow y=3\left[ {{\left( x-2 \right)}^{2}}-\dfrac{8}{3} \right] \\
\end{align}\]
Hence, the above expression represents the quadratic expression in vertex form.
Note: You may note that we have derived a general expression for the vertex form. You must remember the result of this vertex form because in coordinate geometry of parabola we will be asked to find the vertex of parabola which can easily be done by this expression. The vertex is given as \[\left( \dfrac{-b}{2a},\dfrac{-D}{4a} \right)\]. You may see that we have applied the method of completing the square for the derivation. This method is generally used for the derivation. This method is generally used for finding the roots of a quadratic equation.
Complete step by step answer:
Here, we have been provided with the quadratic equation: - \[y=3{{x}^{2}}-12x+4\] and we are asked to write it in vertex form.
Now, we are going to use the method of completing the square to solve the question. This method states that if we have a quadratic equation of the form \[y=a{{x}^{2}}+bx+c\] then its vertex form is written as: - \[y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\dfrac{D}{4{{a}^{2}}} \right]\], where \[D={{b}^{2}}-4ac\], called the discriminant of the quadratic equation.
So, on comparing the given quadratic expression: - \[y=3{{x}^{2}}-12x+4\] with the general form given as: - \[y=a{{x}^{2}}+bx+c\], we can conclude that: -
\[\Rightarrow \] a = 3, b = -12 and c = 4
Applying the formula for discriminant of a quadratic equation given as: - \[D={{b}^{2}}-4ac\], where ‘D’ is the discriminant, we get,
\[\begin{align}
& \Rightarrow D={{\left( -12 \right)}^{2}}-4\times 3\times 4 \\
& \Rightarrow D=144-48 \\
& \Rightarrow D=96 \\
\end{align}\]
Now, \[y=a{{x}^{2}}+bx+c\] can be written as: -
\[\begin{align}
& \Rightarrow y=a\left( {{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a} \right) \\
& \Rightarrow y=a\left( {{x}^{2}}+2.\dfrac{b}{2a}x+{{\left( \dfrac{b}{2a} \right)}^{2}}-\dfrac{{{b}^{2}}}{{{\left( 2a \right)}^{2}}}+\dfrac{c}{a} \right) \\
\end{align}\]
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\left( \dfrac{{{b}^{2}}}{{{\left( 2a \right)}^{2}}}-\dfrac{c}{a} \right) \right]\]
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\left( \dfrac{{{b}^{2}}-4ac}{4{{a}^{2}}} \right) \right]\]
Substituting, \[{{b}^{2}}-4ac=0\], we get,
\[\Rightarrow y=a\left[ {{\left( x+\dfrac{b}{2a} \right)}^{2}}-\dfrac{D}{4{{a}^{2}}} \right]\]
So, we have derived a general form for the vertex representation of a quadratic expression. Therefore, for the expression: - \[y=3{{x}^{2}}-12x+4\], we have, substituting the values of a, b, c and D.
\[\begin{align}
& \Rightarrow y=3\left[ {{\left( x+\left( \dfrac{-12}{2\times 3} \right) \right)}^{2}}-\dfrac{96}{4\times {{\left( 3 \right)}^{2}}} \right] \\
& \Rightarrow y=3\left[ {{\left( x-2 \right)}^{2}}-\dfrac{8}{3} \right] \\
\end{align}\]
Hence, the above expression represents the quadratic expression in vertex form.
Note: You may note that we have derived a general expression for the vertex form. You must remember the result of this vertex form because in coordinate geometry of parabola we will be asked to find the vertex of parabola which can easily be done by this expression. The vertex is given as \[\left( \dfrac{-b}{2a},\dfrac{-D}{4a} \right)\]. You may see that we have applied the method of completing the square for the derivation. This method is generally used for the derivation. This method is generally used for finding the roots of a quadratic equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

