
Write the principal value of $ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ .
Answer
553.8k+ views
Hint: We will find the value of $ {{\tan }^{-1}}\left( 1 \right) $ . We will check if this value lies in the range of the function $ {{\tan }^{-1}}x $ . After that we will find the value of $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ . We will check if this value lies in the range of the inverse cosine function. If both these values lie in the respective range, then they are the principal values. We will add these principal values to find the principal value of the given function.
Complete step by step answer:
The given function is $ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ . Let us look at the first term of the given function. The first term is $ {{\tan }^{-1}}\left( 1 \right) $ . We know that $ \tan \dfrac{\pi }{4}=1 $ . Therefore, we have $ {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4} $ . The range of the inverse tangent function is $ \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . Since $ \dfrac{\pi }{4}\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ , it is the principal value of $ {{\tan }^{-1}}\left( 1 \right) $ .
Next, let us look at the second term of the given function. The second term is $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ . We know that $ \cos \dfrac{2\pi }{3}=-\dfrac{1}{2} $ . Hence, we have $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3} $ . Now, we are aware that the range of the inverse cosine function is $ \left[ 0,\pi \right] $ . We can see that $ \dfrac{2\pi }{3}\in \left[ 0,\pi \right] $ . Therefore, $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3} $ is its principal value.
So, the principal value of the given function is the following,
$ \begin{align}
& {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3} \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi +8\pi }{12} \\
& \therefore {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{11\pi }{12} \\
\end{align} $
Hence, the principal value of the given function is $ \dfrac{11\pi }{12} $ .
Note:
We should be aware of the range of inverse trigonometric functions. The inverse value of a trigonometric function can have multiple values. Therefore, it is important to define the principal value. The principal value makes the inverse trigonometric function single valued. This is essential for questions of this type.
Complete step by step answer:
The given function is $ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ . Let us look at the first term of the given function. The first term is $ {{\tan }^{-1}}\left( 1 \right) $ . We know that $ \tan \dfrac{\pi }{4}=1 $ . Therefore, we have $ {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4} $ . The range of the inverse tangent function is $ \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ . Since $ \dfrac{\pi }{4}\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) $ , it is the principal value of $ {{\tan }^{-1}}\left( 1 \right) $ .
Next, let us look at the second term of the given function. The second term is $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right) $ . We know that $ \cos \dfrac{2\pi }{3}=-\dfrac{1}{2} $ . Hence, we have $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3} $ . Now, we are aware that the range of the inverse cosine function is $ \left[ 0,\pi \right] $ . We can see that $ \dfrac{2\pi }{3}\in \left[ 0,\pi \right] $ . Therefore, $ {{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3} $ is its principal value.
So, the principal value of the given function is the following,
$ \begin{align}
& {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3} \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi +8\pi }{12} \\
& \therefore {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{11\pi }{12} \\
\end{align} $
Hence, the principal value of the given function is $ \dfrac{11\pi }{12} $ .
Note:
We should be aware of the range of inverse trigonometric functions. The inverse value of a trigonometric function can have multiple values. Therefore, it is important to define the principal value. The principal value makes the inverse trigonometric function single valued. This is essential for questions of this type.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

