
Write the following in the polar form- (i)$ - 1 - {\text{i}}$ (ii)$1 - {\text{i}}$
Answer
576.3k+ views
Hint: The polar form of ${\text{a + ib}}$ is ${\text{rcos}}\theta {\text{ + irsin}}\theta $ where ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $, $\cos \theta = \dfrac{{\text{a}}}{{\text{r}}}$ and $\sin \theta = \dfrac{{\text{b}}}{{\text{r}}}$ . We can use these formulas to find the polar form of the given complex numbers.
Complete step-by-step answer:
(i)Given complex number z=$ - 1 - {\text{i}}$ which is in the form of ${\text{a + ib}}$ where a=$ - 1$ and b= $ - 1$
We have to write it in polar form which is z=${\text{rcos}}\theta {\text{ + irsin}}\theta $ where${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $, $\cos \theta = \dfrac{{\text{a}}}{{\text{r}}}$ and $\sin \theta = \dfrac{{\text{b}}}{{\text{r}}}$.
Since we know the values of ‘a’ and ‘b’, so put the values of ‘a’ and ‘b’ in ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $ .
$ \Rightarrow $ r=$\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} $
On simplifying we get,
$ \Rightarrow $ r=$\sqrt {1 + 1} = \sqrt 2 $
Now that we know the value of r we can find the values of ${{\theta }}$.
$ \Rightarrow \cos \theta = \dfrac{{\text{a}}}{{\text{r}}} = \dfrac{{ - 1}}{{\sqrt 2 }}$ And since we know that $\cos \dfrac{{3\pi }}{4} = \dfrac{{ - 1}}{{\sqrt 2 }}$
So we can find the value of $\theta $
$ \Rightarrow \cos \theta = \cos \dfrac{{3\pi }}{4} \Rightarrow \theta = \dfrac{{3\pi }}{4}$
On putting the values or r and ${{\theta }}$in the value of z, we get the value of z in polar form
z$ = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} + \sin \dfrac{{3\pi }}{4}} \right)$
(ii) Given complex number z=$1 - {\text{i}}$ which is in the form of ${\text{a + ib}}$ where a= $1$ and b=$ - 1$
We have to write it in polar form which is z=${\text{rcos}}\theta {\text{ + irsin}}\theta $ where ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $, $\cos \theta = \dfrac{{\text{a}}}{{\text{r}}}$ and $\sin \theta = \dfrac{{\text{b}}}{{\text{r}}}$.
Since we know the values of a and b so put the values of a and b in ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $
$ \Rightarrow $ r=$\sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2}} $
On simplifying we get,
$ \Rightarrow $ r=$\sqrt {1 + 1} = \sqrt 2 $
Now that we know the value of r we can find the value of ${{\theta }}$.
$ \Rightarrow \cos \theta = \dfrac{{\text{a}}}{{\text{r}}} = \dfrac{1}{{\sqrt 2 }}$ $ = \cos \dfrac{\pi }{4}$ [ as $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ ]
$ \Rightarrow \theta = \dfrac{\pi }{4}$
On putting the values or r and ${{\theta }}$in the value of z, we get
z$ = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + \sin \dfrac{\pi }{4}} \right)$.
Note: The polar form of ${\text{a + ib}}$ can also be written as $\left( {{\text{r,}}\theta } \right)$.So the polar form of $ - 1 - {\text{i}}$ can be written as $\left( {\sqrt 2 ,\dfrac{{3\pi }}{4}} \right)$ and the polar form of $1 - {\text{i}}$ can be written as $\left( {\sqrt 2 ,\dfrac{\pi }{4}} \right)$ .In the complex number ${\text{a + ib}}$, ${\text{a}}$ is the real part and ${\text{b}}$ is the imaginary part of the complex number.
Complete step-by-step answer:
(i)Given complex number z=$ - 1 - {\text{i}}$ which is in the form of ${\text{a + ib}}$ where a=$ - 1$ and b= $ - 1$
We have to write it in polar form which is z=${\text{rcos}}\theta {\text{ + irsin}}\theta $ where${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $, $\cos \theta = \dfrac{{\text{a}}}{{\text{r}}}$ and $\sin \theta = \dfrac{{\text{b}}}{{\text{r}}}$.
Since we know the values of ‘a’ and ‘b’, so put the values of ‘a’ and ‘b’ in ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $ .
$ \Rightarrow $ r=$\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} $
On simplifying we get,
$ \Rightarrow $ r=$\sqrt {1 + 1} = \sqrt 2 $
Now that we know the value of r we can find the values of ${{\theta }}$.
$ \Rightarrow \cos \theta = \dfrac{{\text{a}}}{{\text{r}}} = \dfrac{{ - 1}}{{\sqrt 2 }}$ And since we know that $\cos \dfrac{{3\pi }}{4} = \dfrac{{ - 1}}{{\sqrt 2 }}$
So we can find the value of $\theta $
$ \Rightarrow \cos \theta = \cos \dfrac{{3\pi }}{4} \Rightarrow \theta = \dfrac{{3\pi }}{4}$
On putting the values or r and ${{\theta }}$in the value of z, we get the value of z in polar form
z$ = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} + \sin \dfrac{{3\pi }}{4}} \right)$
(ii) Given complex number z=$1 - {\text{i}}$ which is in the form of ${\text{a + ib}}$ where a= $1$ and b=$ - 1$
We have to write it in polar form which is z=${\text{rcos}}\theta {\text{ + irsin}}\theta $ where ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $, $\cos \theta = \dfrac{{\text{a}}}{{\text{r}}}$ and $\sin \theta = \dfrac{{\text{b}}}{{\text{r}}}$.
Since we know the values of a and b so put the values of a and b in ${\text{r = }}\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} $
$ \Rightarrow $ r=$\sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2}} $
On simplifying we get,
$ \Rightarrow $ r=$\sqrt {1 + 1} = \sqrt 2 $
Now that we know the value of r we can find the value of ${{\theta }}$.
$ \Rightarrow \cos \theta = \dfrac{{\text{a}}}{{\text{r}}} = \dfrac{1}{{\sqrt 2 }}$ $ = \cos \dfrac{\pi }{4}$ [ as $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ ]
$ \Rightarrow \theta = \dfrac{\pi }{4}$
On putting the values or r and ${{\theta }}$in the value of z, we get
z$ = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + \sin \dfrac{\pi }{4}} \right)$.
Note: The polar form of ${\text{a + ib}}$ can also be written as $\left( {{\text{r,}}\theta } \right)$.So the polar form of $ - 1 - {\text{i}}$ can be written as $\left( {\sqrt 2 ,\dfrac{{3\pi }}{4}} \right)$ and the polar form of $1 - {\text{i}}$ can be written as $\left( {\sqrt 2 ,\dfrac{\pi }{4}} \right)$ .In the complex number ${\text{a + ib}}$, ${\text{a}}$ is the real part and ${\text{b}}$ is the imaginary part of the complex number.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

