
Write the following in the form of A + iB:
$\dfrac{{{{\left( {a + ib} \right)}^2}}}{{\left( {a - ib} \right)}} - \dfrac{{{{\left( {a - ib} \right)}^2}}}{{\left( {a + ib} \right)}}$
Answer
615.6k+ views
Hint: To convert the given equation in the standard form (i.e. A + iB), we will be applying rationalization.
Complete step-by-step answer:
Given, $\dfrac{{{{\left( {a + ib} \right)}^2}}}{{\left( {a - ib} \right)}} - \dfrac{{{{\left( {a - ib} \right)}^2}}}{{\left( {a + ib} \right)}}$
To rationalize, let's multiply and divide each term with (a + ib) and (a – ib) respectively, we get,
$\dfrac{{{{\left( {a + ib} \right)}^2}}}{{\left( {a - ib} \right)}} \times \dfrac{{\left( {a + ib} \right)}}{{\left( {a + ib} \right)}} - \dfrac{{{{\left( {a - ib} \right)}^2}}}{{\left( {a + ib} \right)}} \times \dfrac{{\left( {a - ib} \right)}}{{\left( {a - ib} \right)}}$
We know that, $(a+b)(a-b) = (a^2-b^2)$
$ \Rightarrow \dfrac{{{{\left( {a + ib} \right)}^3}}}{{{a^2} - {i^2}{b^2}}} - \dfrac{{{{\left( {a - ib} \right)}^3}}}{{{a^2} - {i^2}{b^2}}}$
Now you know the value of ${i^2} = - 1$
$ \Rightarrow \dfrac{{{{\left( {a + ib} \right)}^3}}}{{{a^2} + {b^2}}} - \dfrac{{{{\left( {a - ib} \right)}^3}}}{{{a^2} + {b^2}}}$
We know that $(a+b)^3 = (a^3+b^3+3ab(a+b))$ and $(a-b)^3 = (a^3-b^3-3ab(a-b))$
Applying it, we get
$ \Rightarrow \dfrac{{{a^3} + {i^3}{b^3} + 3i{a^2}b + 3{i^2}a{b^2}}}{{{a^2} + {b^2}}} - \dfrac{{{a^3} - {i^3}{b^3} - 3i{a^2}b + 3{i^2}a{b^2}}}{{{a^2} + {b^2}}}$
$ \Rightarrow \dfrac{{{a^3} + {i^3}{b^3} + 3i{a^2}b + 3{i^2}a{b^2} - {a^3} + {i^3}{b^3} + 3i{a^2}b - 3{i^2}a{b^2}}}{{{a^2} + {b^2}}}$
\[ \Rightarrow \dfrac{{2{i^3}{b^3} + 6i{a^2}b}}{{{a^2} + {b^2}}} = \dfrac{{ - 2i{b^3} + 6i{a^2}b}}{{{a^2} + {b^2}}} = i\left( {\dfrac{{ - 2{b^3} + 6{a^2}b}}{{{a^2} + {b^2}}}} \right)\]
$ \Rightarrow 0 + i\left( {\dfrac{{ - 2{b^3} + 6{a^2}b}}{{{a^2} + {b^2}}}} \right)$
So the above equation is in standard form.
Note: To solve such problems, apply the concept of rationalization and use the necessary algebraic identities to arrive at the solution. Remember the values of higher powers of i.
Complete step-by-step answer:
Given, $\dfrac{{{{\left( {a + ib} \right)}^2}}}{{\left( {a - ib} \right)}} - \dfrac{{{{\left( {a - ib} \right)}^2}}}{{\left( {a + ib} \right)}}$
To rationalize, let's multiply and divide each term with (a + ib) and (a – ib) respectively, we get,
$\dfrac{{{{\left( {a + ib} \right)}^2}}}{{\left( {a - ib} \right)}} \times \dfrac{{\left( {a + ib} \right)}}{{\left( {a + ib} \right)}} - \dfrac{{{{\left( {a - ib} \right)}^2}}}{{\left( {a + ib} \right)}} \times \dfrac{{\left( {a - ib} \right)}}{{\left( {a - ib} \right)}}$
We know that, $(a+b)(a-b) = (a^2-b^2)$
$ \Rightarrow \dfrac{{{{\left( {a + ib} \right)}^3}}}{{{a^2} - {i^2}{b^2}}} - \dfrac{{{{\left( {a - ib} \right)}^3}}}{{{a^2} - {i^2}{b^2}}}$
Now you know the value of ${i^2} = - 1$
$ \Rightarrow \dfrac{{{{\left( {a + ib} \right)}^3}}}{{{a^2} + {b^2}}} - \dfrac{{{{\left( {a - ib} \right)}^3}}}{{{a^2} + {b^2}}}$
We know that $(a+b)^3 = (a^3+b^3+3ab(a+b))$ and $(a-b)^3 = (a^3-b^3-3ab(a-b))$
Applying it, we get
$ \Rightarrow \dfrac{{{a^3} + {i^3}{b^3} + 3i{a^2}b + 3{i^2}a{b^2}}}{{{a^2} + {b^2}}} - \dfrac{{{a^3} - {i^3}{b^3} - 3i{a^2}b + 3{i^2}a{b^2}}}{{{a^2} + {b^2}}}$
$ \Rightarrow \dfrac{{{a^3} + {i^3}{b^3} + 3i{a^2}b + 3{i^2}a{b^2} - {a^3} + {i^3}{b^3} + 3i{a^2}b - 3{i^2}a{b^2}}}{{{a^2} + {b^2}}}$
\[ \Rightarrow \dfrac{{2{i^3}{b^3} + 6i{a^2}b}}{{{a^2} + {b^2}}} = \dfrac{{ - 2i{b^3} + 6i{a^2}b}}{{{a^2} + {b^2}}} = i\left( {\dfrac{{ - 2{b^3} + 6{a^2}b}}{{{a^2} + {b^2}}}} \right)\]
$ \Rightarrow 0 + i\left( {\dfrac{{ - 2{b^3} + 6{a^2}b}}{{{a^2} + {b^2}}}} \right)$
So the above equation is in standard form.
Note: To solve such problems, apply the concept of rationalization and use the necessary algebraic identities to arrive at the solution. Remember the values of higher powers of i.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

