
How do you write the first five terms of the sequence \[{a_n} = {2^n}\]?
Answer
551.4k+ views
Hint: Here, we will find the terms in a sequence by using the given \[{n^{th}}\] term of an AP i.e. the given equation. Then we will substitute different values of \[n\], to find the required consecutive terms. An arithmetic sequence is a sequence of numbers such that the common difference between any two consecutive numbers is a constant.
Complete Step by Step Solution:
The equation is the \[{n^{th}}\] term of an AP.
First, we will find the first term of the sequence by substituting \[n = 1\] in \[{a_n} = {2^n}\]. Therefore, we get
\[{a_1} = {2^1}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_1} = 2\]
Now, we will find the second term of the sequence by substituting \[n = 2\] in \[{a_n} = {2^n}\] , we get
\[{a_2} = {2^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_2} = 4\]
Now, we will find the third term of the sequence by substituting \[n = 3\] in \[{a_n} = {2^n}\], we get
\[{a_3} = {2^3}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_3} = 8\]
We will find the fourth term of the sequence by substituting \[n = 4\] in \[{a_n} = {2^n}\], we get
\[{a_4} = {2^4}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_4} = 16\]
Now, we will find the fifth term of the sequence by substituting \[n = 5\] in \[{a_n} = {2^n}\], we get
\[{a_5} = {2^5}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_5} = 32\]
Therefore, the first five terms of the sequence \[{a_n} = {2^n}\] are \[2,4,8,16,32\].
Note:
We know that a sequence of real numbers is defined as an arrangement or a list of real numbers in a specific order. We should know that if a sequence has only a finite number of terms then it is called a finite sequence and if a sequence has infinitely many terms, then it is called an infinite sequence. If we are given a general term of a sequence and then we will be able to find any particular term of the sequence directly.
Complete Step by Step Solution:
The equation is the \[{n^{th}}\] term of an AP.
First, we will find the first term of the sequence by substituting \[n = 1\] in \[{a_n} = {2^n}\]. Therefore, we get
\[{a_1} = {2^1}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_1} = 2\]
Now, we will find the second term of the sequence by substituting \[n = 2\] in \[{a_n} = {2^n}\] , we get
\[{a_2} = {2^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_2} = 4\]
Now, we will find the third term of the sequence by substituting \[n = 3\] in \[{a_n} = {2^n}\], we get
\[{a_3} = {2^3}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_3} = 8\]
We will find the fourth term of the sequence by substituting \[n = 4\] in \[{a_n} = {2^n}\], we get
\[{a_4} = {2^4}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_4} = 16\]
Now, we will find the fifth term of the sequence by substituting \[n = 5\] in \[{a_n} = {2^n}\], we get
\[{a_5} = {2^5}\]
Applying the exponent on the terms, we get
\[ \Rightarrow {a_5} = 32\]
Therefore, the first five terms of the sequence \[{a_n} = {2^n}\] are \[2,4,8,16,32\].
Note:
We know that a sequence of real numbers is defined as an arrangement or a list of real numbers in a specific order. We should know that if a sequence has only a finite number of terms then it is called a finite sequence and if a sequence has infinitely many terms, then it is called an infinite sequence. If we are given a general term of a sequence and then we will be able to find any particular term of the sequence directly.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

