
How do you write $r = 2a\cos \theta $ into a Cartesian equation?
Answer
538.5k+ views
Hint: We will first assume $x = r\cos \theta $ and $y = r\sin \theta $ and find r according to it. After that we will just put in the required values and modify to get the answer.
Complete step-by-step answer:
We have to write $r = 2a\cos \theta $ into a Cartesian equation.
Let us first of all assume that $x = r\cos \theta $ and $y = r\sin \theta $ in the above equation.
Since we assumed that $x = r\cos \theta $. On dividing this by r on both the sides, we will get:-
\[ \Rightarrow \dfrac{x}{r} = \dfrac{{r\cos \theta }}{r}\]
Is we cut off r from the right hand side in both numerator and denominator, we will then obtain the following expression:-
\[ \Rightarrow \dfrac{x}{r} = \cos \theta \] ……………(1)
Now, since we assumed that $x = r\cos \theta $ and $y = r\sin \theta $.
Squaring both, we will then obtain:-
$ \Rightarrow {x^2} = {\left( {r\cos \theta } \right)^2}$ and ${y^2} = {\left( {r\sin \theta } \right)^2}$
Simplifying the calculations by opening the squares in above expression, we will then obtain the following expression:-
$ \Rightarrow {x^2} = {r^2}{\cos ^2}\theta $ and ${y^2} = {r^2}{\sin ^2}\theta $
Adding both the expressions from the above line, we will get:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \]
Taking square of r common on the right hand side, we will then obtain:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)\]
Since, we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\]. Using this in the above equation, we will then obtain the following expression:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}\] …………………..(2)
Now, considering the equation given to us which is $r = 2a\cos \theta $.
Putting the equation (1) in it, we will then obtain:-
$ \Rightarrow r = 2a \times \dfrac{x}{r}$
Taking r from division in the right hand side to multiplication in the left hand side and re – arranging the terms to obtain the following expression:-
$ \Rightarrow x = 2a{r^2}$
Putting the equation (2) in the above expression to obtain the following expression:-
\[ \Rightarrow x = 2a\left( {{x^2} + {y^2}} \right)\]
Hence, we have the required Cartesian equation of $r = 2a\cos \theta $ as \[x = 2a\left( {{x^2} + {y^2}} \right)\].
Note:
The students must note that in the starting steps when we divided x by r in order to the required modification, we could divide because r is non zero because if r would have been zero, either a is zero which makes our equation as the point of origin or we have the angle theta equal to 90 degrees which is also very much fixed. Therefore, we have r is not equal to zero and we divided the whole equation by it. We can never divide any equation by 0 and we cannot multiply any equation by 0 as well.
Complete step-by-step answer:
We have to write $r = 2a\cos \theta $ into a Cartesian equation.
Let us first of all assume that $x = r\cos \theta $ and $y = r\sin \theta $ in the above equation.
Since we assumed that $x = r\cos \theta $. On dividing this by r on both the sides, we will get:-
\[ \Rightarrow \dfrac{x}{r} = \dfrac{{r\cos \theta }}{r}\]
Is we cut off r from the right hand side in both numerator and denominator, we will then obtain the following expression:-
\[ \Rightarrow \dfrac{x}{r} = \cos \theta \] ……………(1)
Now, since we assumed that $x = r\cos \theta $ and $y = r\sin \theta $.
Squaring both, we will then obtain:-
$ \Rightarrow {x^2} = {\left( {r\cos \theta } \right)^2}$ and ${y^2} = {\left( {r\sin \theta } \right)^2}$
Simplifying the calculations by opening the squares in above expression, we will then obtain the following expression:-
$ \Rightarrow {x^2} = {r^2}{\cos ^2}\theta $ and ${y^2} = {r^2}{\sin ^2}\theta $
Adding both the expressions from the above line, we will get:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \]
Taking square of r common on the right hand side, we will then obtain:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)\]
Since, we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\]. Using this in the above equation, we will then obtain the following expression:-
\[ \Rightarrow {x^2} + {y^2} = {r^2}\] …………………..(2)
Now, considering the equation given to us which is $r = 2a\cos \theta $.
Putting the equation (1) in it, we will then obtain:-
$ \Rightarrow r = 2a \times \dfrac{x}{r}$
Taking r from division in the right hand side to multiplication in the left hand side and re – arranging the terms to obtain the following expression:-
$ \Rightarrow x = 2a{r^2}$
Putting the equation (2) in the above expression to obtain the following expression:-
\[ \Rightarrow x = 2a\left( {{x^2} + {y^2}} \right)\]
Hence, we have the required Cartesian equation of $r = 2a\cos \theta $ as \[x = 2a\left( {{x^2} + {y^2}} \right)\].
Note:
The students must note that in the starting steps when we divided x by r in order to the required modification, we could divide because r is non zero because if r would have been zero, either a is zero which makes our equation as the point of origin or we have the angle theta equal to 90 degrees which is also very much fixed. Therefore, we have r is not equal to zero and we divided the whole equation by it. We can never divide any equation by 0 and we cannot multiply any equation by 0 as well.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

