
Without using trigonometric table evaluate:
$\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}+2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}-4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}$.
Answer
615k+ views
Hint: In this question, we will use the concept of trigonometric ratios of complementary angles and trigonometric identities, to find similar terms which can be cancelled.
Complete step-by-step answer:
In trigonometry, trigonometric ratios of complementary angles are given as below,
$\cos \left( 90-x \right)=\sin x\cdots \cdots \left( i \right)$,
$\cot \left( 90-x \right)=\tan x\cdots \cdots \left( ii \right)$,
$\tan \left( 90-x \right)=\cot x\cdots \cdots \left( iii \right)$.
Also, we know, trigonometric identities are as below,
${{\cos }^{2}}x+{{\sin }^{2}}x=1\cdots \cdots \left( iv \right)$,
${{\sec }^{2}}x-{{\tan }^{2}}x=1\cdots \cdots \left( v \right)$,
$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1\cdots \cdots \left( vi \right)$.
Let us break the given question in three parts to make the solution easier.
Let, $A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}$,
$\,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}$,
$C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}$.
Now, we can write $A$ as,
$\begin{align}
& A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}} \\
& =\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{\left( 90-20 \right)}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{\left( 90-50 \right)}^{\circ }}} \\
\end{align}$
Applying equation $\left( i \right)$ in numerator and equation $\left( ii \right)$ in denominator of $A$, we get,
$A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\sin }^{2}}{{20}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\tan }^{2}}{{50}^{\circ }}}$
Applying equation $\left( iv \right)$ in numerator and equation $\left( v \right)$ in denominator here, we get,
$A=\dfrac{1}{1}=1$
Now, we can write $B$ as,
$\,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{\left( 90-58 \right)}^{\circ }}$
Applying equation $\left( iii \right)$here, we get,
$\begin{align}
& \,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\cot {{58}^{\circ }} \\
& \,=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2{{\cot }^{2}}{{58}^{\circ }} \\
\end{align}$
Applying equation $\left( v \right)$ here, we get,
$B=2$
Now, we can write $C$ as,
$\begin{align}
& C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{\left( 90-37 \right)}^{\circ }}\tan {{\left( 90-13 \right)}^{\circ }} \\
\end{align}$
Applying equation $\left( iii \right)$ here, we get,
$\begin{align}
& C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }} \\
\end{align}$
Now, we know that $\cot x=\dfrac{1}{\tan x}$. Using this in above equation, we get,
$C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}}$
Cancelling tan terms from numerator and denominator, we get,
$C=\tan {{45}^{\circ }}$
As we know that $\tan x=\dfrac{\sin x}{\cos x}$, therefore,
$\begin{align}
& C=\dfrac{\sin {{45}^{\circ }}}{\cos {{45}^{\circ }}} \\
& =\dfrac{\sin {{45}^{\circ }}}{\cos {{\left( 90-45 \right)}^{\circ }}} \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$C=\dfrac{\sin {{45}^{\circ }}}{\sin {{45}^{\circ }}}$
cancelling the terms, we get,
$C=1$
Now, we can write given question as,
$\begin{align}
& \dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}+2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}-4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =A+B-C \\
\end{align}$
Putting values of $A,\,B\,\text{and}\,C$ here, we get,
$\begin{align}
& \dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}+2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}-4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =1+2-1 \\
& =2 \\
\end{align}$
Hence the value of the given expression is 2.
Note: This question can also be done by changing other trigonometric ratios. The objective is to express it in similar terms which can cancel each other or can together give numerical value
Complete step-by-step answer:
In trigonometry, trigonometric ratios of complementary angles are given as below,
$\cos \left( 90-x \right)=\sin x\cdots \cdots \left( i \right)$,
$\cot \left( 90-x \right)=\tan x\cdots \cdots \left( ii \right)$,
$\tan \left( 90-x \right)=\cot x\cdots \cdots \left( iii \right)$.
Also, we know, trigonometric identities are as below,
${{\cos }^{2}}x+{{\sin }^{2}}x=1\cdots \cdots \left( iv \right)$,
${{\sec }^{2}}x-{{\tan }^{2}}x=1\cdots \cdots \left( v \right)$,
$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1\cdots \cdots \left( vi \right)$.
Let us break the given question in three parts to make the solution easier.
Let, $A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}$,
$\,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}$,
$C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}$.
Now, we can write $A$ as,
$\begin{align}
& A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}} \\
& =\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{\left( 90-20 \right)}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{\left( 90-50 \right)}^{\circ }}} \\
\end{align}$
Applying equation $\left( i \right)$ in numerator and equation $\left( ii \right)$ in denominator of $A$, we get,
$A=\dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\sin }^{2}}{{20}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\tan }^{2}}{{50}^{\circ }}}$
Applying equation $\left( iv \right)$ in numerator and equation $\left( v \right)$ in denominator here, we get,
$A=\dfrac{1}{1}=1$
Now, we can write $B$ as,
$\,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{\left( 90-58 \right)}^{\circ }}$
Applying equation $\left( iii \right)$here, we get,
$\begin{align}
& \,B=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\cot {{58}^{\circ }} \\
& \,=2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2{{\cot }^{2}}{{58}^{\circ }} \\
\end{align}$
Applying equation $\left( v \right)$ here, we get,
$B=2$
Now, we can write $C$ as,
$\begin{align}
& C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{\left( 90-37 \right)}^{\circ }}\tan {{\left( 90-13 \right)}^{\circ }} \\
\end{align}$
Applying equation $\left( iii \right)$ here, we get,
$\begin{align}
& C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }} \\
\end{align}$
Now, we know that $\cot x=\dfrac{1}{\tan x}$. Using this in above equation, we get,
$C=4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}}$
Cancelling tan terms from numerator and denominator, we get,
$C=\tan {{45}^{\circ }}$
As we know that $\tan x=\dfrac{\sin x}{\cos x}$, therefore,
$\begin{align}
& C=\dfrac{\sin {{45}^{\circ }}}{\cos {{45}^{\circ }}} \\
& =\dfrac{\sin {{45}^{\circ }}}{\cos {{\left( 90-45 \right)}^{\circ }}} \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$C=\dfrac{\sin {{45}^{\circ }}}{\sin {{45}^{\circ }}}$
cancelling the terms, we get,
$C=1$
Now, we can write given question as,
$\begin{align}
& \dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}+2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}-4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =A+B-C \\
\end{align}$
Putting values of $A,\,B\,\text{and}\,C$ here, we get,
$\begin{align}
& \dfrac{co{{s}^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{70}^{\circ }}}{{{\sec }^{2}}{{50}^{\circ }}-{{\cot }^{2}}{{40}^{\circ }}}+2\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-2\cot {{58}^{\circ }}\tan {{32}^{\circ }}-4\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }} \\
& =1+2-1 \\
& =2 \\
\end{align}$
Hence the value of the given expression is 2.
Note: This question can also be done by changing other trigonometric ratios. The objective is to express it in similar terms which can cancel each other or can together give numerical value
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

