
With usual notations, if in a triangle ABC,$\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{{a + b}}{{13}}$ then $\cos A:\cos B:\cos C$is equal to
A) $\left( a \right){\text{ 7:19:25}}$
B) $\left( b \right){\text{ 19:7:25}}$
C) $\left( c \right){\text{ 12:14:20}}$
D) $\left( d \right){\text{ 19:25:20}}$
Answer
485.1k+ views
Hint:
For solving this type of question, we will assume the ratio be any arbitrary constant and from there we will calculate the sides of a triangle. And after that putting the values in the ratios we have to calculate, we will get the required ratios.
Complete step by step solution:
Let us assume each ratio be$k$, then we have the equation written as
$ \Rightarrow b + c = 11k,{\text{ }}c + a = 12k,{\text{ }}a + b = 13k$
Now from these three equations, on adding all the three equations, we will get
$ \Rightarrow 2\left( {a + b + c} \right) = 36k$
Taking the $2$to the right side, we get
$ \Rightarrow a + b + c = 18k$
Now using the above equation, after calculating the values we get
$ \Rightarrow a = 7k,{\text{ b = 6k, c = 5k}}$
So we have all the values of the term.
Now we will calculate the values of $\cos A:\cos B:\cos C$
So the values $\cos A$will be equals to
$ \Rightarrow \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
On putting the values, we get
$ \Rightarrow \dfrac{{36{k^2} + 25{k^2} - 49{k^2}}}{{60{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{12{k^2}}}{{60{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos A = \dfrac{1}{5}$
So the values $\cos B$will be equals to
$ \Rightarrow \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
On putting the values, we get
$ \Rightarrow \dfrac{{49{k^2} + 25{k^2} - 36{k^2}}}{{70{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{38{k^2}}}{{70{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos B = \dfrac{{19}}{{35}}$
So the values $\cos C$will be equals to
$ \Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
On putting the values, we get
$ \Rightarrow \dfrac{{49{k^2} + 36{k^2} - 25{k^2}}}{{84{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{60{k^2}}}{{84{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos A = \dfrac{5}{7}$
Therefore, the ratios $\cos A:\cos B:\cos C$will be
$ \Rightarrow \dfrac{1}{5}:\dfrac{{19}}{{35}}:\dfrac{5}{7}$
So it can also be written as
$ \Rightarrow 7:19:25$
Hence, the option $\left( a \right)$will be correct.
Note:
For solving this type of question, we should always assume the ratios be any constant and then go for the solution of it. In this type of question if our linear equations are correct then we can easily find out the ratios. And in this way, we can easily solve it.
For solving this type of question, we will assume the ratio be any arbitrary constant and from there we will calculate the sides of a triangle. And after that putting the values in the ratios we have to calculate, we will get the required ratios.
Complete step by step solution:
Let us assume each ratio be$k$, then we have the equation written as
$ \Rightarrow b + c = 11k,{\text{ }}c + a = 12k,{\text{ }}a + b = 13k$
Now from these three equations, on adding all the three equations, we will get
$ \Rightarrow 2\left( {a + b + c} \right) = 36k$
Taking the $2$to the right side, we get
$ \Rightarrow a + b + c = 18k$
Now using the above equation, after calculating the values we get
$ \Rightarrow a = 7k,{\text{ b = 6k, c = 5k}}$
So we have all the values of the term.
Now we will calculate the values of $\cos A:\cos B:\cos C$
So the values $\cos A$will be equals to
$ \Rightarrow \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
On putting the values, we get
$ \Rightarrow \dfrac{{36{k^2} + 25{k^2} - 49{k^2}}}{{60{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{12{k^2}}}{{60{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos A = \dfrac{1}{5}$
So the values $\cos B$will be equals to
$ \Rightarrow \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
On putting the values, we get
$ \Rightarrow \dfrac{{49{k^2} + 25{k^2} - 36{k^2}}}{{70{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{38{k^2}}}{{70{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos B = \dfrac{{19}}{{35}}$
So the values $\cos C$will be equals to
$ \Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
On putting the values, we get
$ \Rightarrow \dfrac{{49{k^2} + 36{k^2} - 25{k^2}}}{{84{k^2}}}$
And on calculating, we get
$ \Rightarrow \dfrac{{60{k^2}}}{{84{k^2}}}$
And on doing the lowest common factor, we get
$ \Rightarrow \cos A = \dfrac{5}{7}$
Therefore, the ratios $\cos A:\cos B:\cos C$will be
$ \Rightarrow \dfrac{1}{5}:\dfrac{{19}}{{35}}:\dfrac{5}{7}$
So it can also be written as
$ \Rightarrow 7:19:25$
Hence, the option $\left( a \right)$will be correct.
Note:
For solving this type of question, we should always assume the ratios be any constant and then go for the solution of it. In this type of question if our linear equations are correct then we can easily find out the ratios. And in this way, we can easily solve it.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State the laws of reflection of light

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Find the missing frequency in the following distribution class 11 maths CBSE
