
With the usual notation, in \[\Delta ABC\], if \[\angle A + \angle B = 120^\circ ,a = \sqrt 3 + 1\] and \[b = \sqrt 3 - 1\]. Then, what will be the ratio for \[\angle A:\angle B\] ?
Answer
574.8k+ views
Hint: This question is from Trigonometric geometry. We have to know the angle property for any triangle will be \[\angle A + \angle B + \angle C = 180^\circ \]. By using sine rule property for triangle ABC, we have to show \[\dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]. Then, by putting given values of a and b in this equation we will get \[\angle A:\angle B\]
Complete step-by-step answer:
Given, \[\angle A + \angle B = 120^\circ {\rm{ }}...{\rm{(i)}}\]
\[\begin{array}{l}
{\rm{In }}\Delta {\rm{ABC, by using Sine Rule,we get}}\\
\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
\end{array}\]
Now, we can write equation for a, b and c
\[a = k\sin A,b = k\sin C,c = k\sin C\]
Now, we have
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}\]
We can write values of a, b and c in this equation
\[ = \left( {\dfrac{{k\sin A - k\sin B}}{{k\sin A + k\sin B}}} \right)\cot \dfrac{C}{2}\]
We can expand this equation as follows,
\[ = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}}.\dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
But, we know
\[\begin{array}{l}
A + B + C = \pi \\
A + B = \pi - C
\end{array}\]
Now, we can put values of A + B in this equation
\[ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{\sin \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}} \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}} \times \tan \left( {\dfrac{{A - B}}{2}} \right) \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Hence, we get
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Now, \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
We can put given values of a = and b = in this equation.
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {\dfrac{{60^\circ }}{2}} \right)\]
\[\left[ \begin{array}{l}
{\rm{As }}A + B + C = 180^\circ \\
\angle C = 180^\circ - 120^\circ = 60^\circ
\end{array} \right]\]
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {30^\circ } \right)\]
On simplification, we get
\[ = \dfrac{1}{{\sqrt 3 }}.\sqrt 3 = 1\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = 1\]
Now, we can convert this equation as,
\[\dfrac{{A - B}}{2} = {\tan ^{ - 1}}\left( 1 \right)\]
But, we know,
\[{\tan ^{ - 1}}\left( 1 \right) = 45^\circ \]
Now, equation becomes
\[ \Rightarrow A - B = 90^\circ \]
We can write this equation in angle form,
\[ \Rightarrow \angle A - \angle B = 90^\circ {\rm{ }}...{\rm{(ii)}}\]
By adding Eqs.(i) and (ii), we get
\[\angle 2A = 210^\circ \]
On simplification, we get
\[ \Rightarrow \angle A = \dfrac{{210^\circ }}{2} = 105^\circ \]
After putting the value of \[\angle A\] in Eq.(i). We get
\[\begin{array}{l}
105^\circ + \angle B = 120^\circ \\
\Rightarrow \angle B = 120^\circ - 105^\circ = 15^\circ
\end{array}\]
This is the required solution.
So, the correct answer is “Option A”.
Note: Calculation plays an important role in these types of trigonometric problems.
Students should know the angle property that the sum of all internal angles of a triangle is always \[180^\circ \].
In this problem, while using formulas student can do mistake like \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a + b}}{{a - b}}\cot \left( {\dfrac{C}{2}} \right)\] instead of \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
Here, students must take while using trigonometric formulae.
There is an alternate method to solve this question.
We have sine rule,
\[\dfrac{{\sqrt 3 + 1}}{{\sin \left( {120 - x} \right)}} = \dfrac{{\sqrt 3 - 1}}{{\sin x}}\]
Now, we can rewrite this equation as,
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\sin \left( {120 - x} \right)}}{{\sin x}}\]
\[\begin{array}{l}
\Rightarrow \tan x = 2 - \sqrt 3 \\
\Rightarrow x = 15^\circ \\
\therefore \dfrac{{\angle A}}{{\angle B}} = \dfrac{7}{1}
\end{array}\]
Complete step-by-step answer:
Given, \[\angle A + \angle B = 120^\circ {\rm{ }}...{\rm{(i)}}\]
\[\begin{array}{l}
{\rm{In }}\Delta {\rm{ABC, by using Sine Rule,we get}}\\
\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
\end{array}\]
Now, we can write equation for a, b and c
\[a = k\sin A,b = k\sin C,c = k\sin C\]
Now, we have
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}\]
We can write values of a, b and c in this equation
\[ = \left( {\dfrac{{k\sin A - k\sin B}}{{k\sin A + k\sin B}}} \right)\cot \dfrac{C}{2}\]
We can expand this equation as follows,
\[ = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}}.\dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
But, we know
\[\begin{array}{l}
A + B + C = \pi \\
A + B = \pi - C
\end{array}\]
Now, we can put values of A + B in this equation
\[ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{\sin \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}} \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}} \times \tan \left( {\dfrac{{A - B}}{2}} \right) \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Hence, we get
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Now, \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
We can put given values of a = and b = in this equation.
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {\dfrac{{60^\circ }}{2}} \right)\]
\[\left[ \begin{array}{l}
{\rm{As }}A + B + C = 180^\circ \\
\angle C = 180^\circ - 120^\circ = 60^\circ
\end{array} \right]\]
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {30^\circ } \right)\]
On simplification, we get
\[ = \dfrac{1}{{\sqrt 3 }}.\sqrt 3 = 1\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = 1\]
Now, we can convert this equation as,
\[\dfrac{{A - B}}{2} = {\tan ^{ - 1}}\left( 1 \right)\]
But, we know,
\[{\tan ^{ - 1}}\left( 1 \right) = 45^\circ \]
Now, equation becomes
\[ \Rightarrow A - B = 90^\circ \]
We can write this equation in angle form,
\[ \Rightarrow \angle A - \angle B = 90^\circ {\rm{ }}...{\rm{(ii)}}\]
By adding Eqs.(i) and (ii), we get
\[\angle 2A = 210^\circ \]
On simplification, we get
\[ \Rightarrow \angle A = \dfrac{{210^\circ }}{2} = 105^\circ \]
After putting the value of \[\angle A\] in Eq.(i). We get
\[\begin{array}{l}
105^\circ + \angle B = 120^\circ \\
\Rightarrow \angle B = 120^\circ - 105^\circ = 15^\circ
\end{array}\]
This is the required solution.
So, the correct answer is “Option A”.
Note: Calculation plays an important role in these types of trigonometric problems.
Students should know the angle property that the sum of all internal angles of a triangle is always \[180^\circ \].
In this problem, while using formulas student can do mistake like \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a + b}}{{a - b}}\cot \left( {\dfrac{C}{2}} \right)\] instead of \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
Here, students must take while using trigonometric formulae.
There is an alternate method to solve this question.
We have sine rule,
\[\dfrac{{\sqrt 3 + 1}}{{\sin \left( {120 - x} \right)}} = \dfrac{{\sqrt 3 - 1}}{{\sin x}}\]
Now, we can rewrite this equation as,
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\sin \left( {120 - x} \right)}}{{\sin x}}\]
\[\begin{array}{l}
\Rightarrow \tan x = 2 - \sqrt 3 \\
\Rightarrow x = 15^\circ \\
\therefore \dfrac{{\angle A}}{{\angle B}} = \dfrac{7}{1}
\end{array}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

