
With the usual notation, in \[\Delta ABC\], if \[\angle A + \angle B = 120^\circ ,a = \sqrt 3 + 1\] and \[b = \sqrt 3 - 1\]. Then, what will be the ratio for \[\angle A:\angle B\] ?
Answer
512.1k+ views
Hint: This question is from Trigonometric geometry. We have to know the angle property for any triangle will be \[\angle A + \angle B + \angle C = 180^\circ \]. By using sine rule property for triangle ABC, we have to show \[\dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]. Then, by putting given values of a and b in this equation we will get \[\angle A:\angle B\]
Complete step-by-step answer:
Given, \[\angle A + \angle B = 120^\circ {\rm{ }}...{\rm{(i)}}\]
\[\begin{array}{l}
{\rm{In }}\Delta {\rm{ABC, by using Sine Rule,we get}}\\
\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
\end{array}\]
Now, we can write equation for a, b and c
\[a = k\sin A,b = k\sin C,c = k\sin C\]
Now, we have
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}\]
We can write values of a, b and c in this equation
\[ = \left( {\dfrac{{k\sin A - k\sin B}}{{k\sin A + k\sin B}}} \right)\cot \dfrac{C}{2}\]
We can expand this equation as follows,
\[ = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}}.\dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
But, we know
\[\begin{array}{l}
A + B + C = \pi \\
A + B = \pi - C
\end{array}\]
Now, we can put values of A + B in this equation
\[ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{\sin \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}} \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}} \times \tan \left( {\dfrac{{A - B}}{2}} \right) \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Hence, we get
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Now, \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
We can put given values of a = and b = in this equation.
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {\dfrac{{60^\circ }}{2}} \right)\]
\[\left[ \begin{array}{l}
{\rm{As }}A + B + C = 180^\circ \\
\angle C = 180^\circ - 120^\circ = 60^\circ
\end{array} \right]\]
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {30^\circ } \right)\]
On simplification, we get
\[ = \dfrac{1}{{\sqrt 3 }}.\sqrt 3 = 1\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = 1\]
Now, we can convert this equation as,
\[\dfrac{{A - B}}{2} = {\tan ^{ - 1}}\left( 1 \right)\]
But, we know,
\[{\tan ^{ - 1}}\left( 1 \right) = 45^\circ \]
Now, equation becomes
\[ \Rightarrow A - B = 90^\circ \]
We can write this equation in angle form,
\[ \Rightarrow \angle A - \angle B = 90^\circ {\rm{ }}...{\rm{(ii)}}\]
By adding Eqs.(i) and (ii), we get
\[\angle 2A = 210^\circ \]
On simplification, we get
\[ \Rightarrow \angle A = \dfrac{{210^\circ }}{2} = 105^\circ \]
After putting the value of \[\angle A\] in Eq.(i). We get
\[\begin{array}{l}
105^\circ + \angle B = 120^\circ \\
\Rightarrow \angle B = 120^\circ - 105^\circ = 15^\circ
\end{array}\]
This is the required solution.
So, the correct answer is “Option A”.
Note: Calculation plays an important role in these types of trigonometric problems.
Students should know the angle property that the sum of all internal angles of a triangle is always \[180^\circ \].
In this problem, while using formulas student can do mistake like \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a + b}}{{a - b}}\cot \left( {\dfrac{C}{2}} \right)\] instead of \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
Here, students must take while using trigonometric formulae.
There is an alternate method to solve this question.
We have sine rule,
\[\dfrac{{\sqrt 3 + 1}}{{\sin \left( {120 - x} \right)}} = \dfrac{{\sqrt 3 - 1}}{{\sin x}}\]
Now, we can rewrite this equation as,
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\sin \left( {120 - x} \right)}}{{\sin x}}\]
\[\begin{array}{l}
\Rightarrow \tan x = 2 - \sqrt 3 \\
\Rightarrow x = 15^\circ \\
\therefore \dfrac{{\angle A}}{{\angle B}} = \dfrac{7}{1}
\end{array}\]
Complete step-by-step answer:

Given, \[\angle A + \angle B = 120^\circ {\rm{ }}...{\rm{(i)}}\]
\[\begin{array}{l}
{\rm{In }}\Delta {\rm{ABC, by using Sine Rule,we get}}\\
\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k
\end{array}\]
Now, we can write equation for a, b and c
\[a = k\sin A,b = k\sin C,c = k\sin C\]
Now, we have
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}\]
We can write values of a, b and c in this equation
\[ = \left( {\dfrac{{k\sin A - k\sin B}}{{k\sin A + k\sin B}}} \right)\cot \dfrac{C}{2}\]
We can expand this equation as follows,
\[ = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}}.\dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
But, we know
\[\begin{array}{l}
A + B + C = \pi \\
A + B = \pi - C
\end{array}\]
Now, we can put values of A + B in this equation
\[ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{\sin \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right).\cos \left( {\dfrac{{A - B}}{2}} \right)}} \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}} \times \tan \left( {\dfrac{{A - B}}{2}} \right) \times \dfrac{{\cos \left( {\dfrac{C}{2}} \right)}}{{\sin \left( {\dfrac{C}{2}} \right)}}\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Hence, we get
\[ \Rightarrow \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2} = \tan \left( {\dfrac{{A - B}}{2}} \right)\]
Now, \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
We can put given values of a = and b = in this equation.
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {\dfrac{{60^\circ }}{2}} \right)\]
\[\left[ \begin{array}{l}
{\rm{As }}A + B + C = 180^\circ \\
\angle C = 180^\circ - 120^\circ = 60^\circ
\end{array} \right]\]
\[ = \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{{2\left( {\sqrt 3 } \right)}}\cot \left( {30^\circ } \right)\]
On simplification, we get
\[ = \dfrac{1}{{\sqrt 3 }}.\sqrt 3 = 1\]
\[ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = 1\]
Now, we can convert this equation as,
\[\dfrac{{A - B}}{2} = {\tan ^{ - 1}}\left( 1 \right)\]
But, we know,
\[{\tan ^{ - 1}}\left( 1 \right) = 45^\circ \]
Now, equation becomes
\[ \Rightarrow A - B = 90^\circ \]
We can write this equation in angle form,
\[ \Rightarrow \angle A - \angle B = 90^\circ {\rm{ }}...{\rm{(ii)}}\]
By adding Eqs.(i) and (ii), we get
\[\angle 2A = 210^\circ \]
On simplification, we get
\[ \Rightarrow \angle A = \dfrac{{210^\circ }}{2} = 105^\circ \]
After putting the value of \[\angle A\] in Eq.(i). We get
\[\begin{array}{l}
105^\circ + \angle B = 120^\circ \\
\Rightarrow \angle B = 120^\circ - 105^\circ = 15^\circ
\end{array}\]
This is the required solution.
So, the correct answer is “Option A”.
Note: Calculation plays an important role in these types of trigonometric problems.
Students should know the angle property that the sum of all internal angles of a triangle is always \[180^\circ \].
In this problem, while using formulas student can do mistake like \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a + b}}{{a - b}}\cot \left( {\dfrac{C}{2}} \right)\] instead of \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \left( {\dfrac{C}{2}} \right)\]
Here, students must take while using trigonometric formulae.
There is an alternate method to solve this question.
We have sine rule,
\[\dfrac{{\sqrt 3 + 1}}{{\sin \left( {120 - x} \right)}} = \dfrac{{\sqrt 3 - 1}}{{\sin x}}\]
Now, we can rewrite this equation as,
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\sin \left( {120 - x} \right)}}{{\sin x}}\]
\[\begin{array}{l}
\Rightarrow \tan x = 2 - \sqrt 3 \\
\Rightarrow x = 15^\circ \\
\therefore \dfrac{{\angle A}}{{\angle B}} = \dfrac{7}{1}
\end{array}\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
