
Which of the following values of \[y\] satisfies the equation?
\[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\]
A. \[y = - 3 \pm \sqrt {17} \]
B. \[y = 8 \pm \sqrt 5 \]
C. \[y = - 8 \pm \sqrt 5 \]
D. \[y = 3 \pm \sqrt {17} \]
Answer
483.9k+ views
Hint: We have to find the value of \[y\] satisfies the equation \[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\]. For this, we will assume \[{y^2} - 6y = t\]. Then we will solve the quadratic equation in \[t\]. After this, we will substitute back \[{y^2} - 6y = t\] and we will solve the quadratic equation in \[y\] to find the value of \[y\] that satisfies the given equation.
Complete step by step answer:
We have to find the value of \[y\] satisfies the equation \[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\].
Let \[{y^2} - 6y = t\].
Putting this in the given equation, we get
\[ \Rightarrow 2{\left( t \right)^2} - 8\left( {t + 3} \right) - 40 = 0\]
On simplifying, we get
\[ \Rightarrow 2{t^2} - 8t - 24 - 40 = 0\]
\[ \Rightarrow 2{t^2} - 8 - 64 = 0\]
On dividing both the sides \[2\], we get
\[ \Rightarrow {t^2} - 4t - 32 = 0\]
As we know, for a quadratic equation, \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\], roots is given by: \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Using this, we get the roots of \[{t^2} - 4t - 32 = 0\] as,
\[ \Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times \left( 1 \right) \times \left( { - 32} \right)} }}{{2 \times 1}}\]
\[ \Rightarrow t = \dfrac{{4 \pm \sqrt {16 + 128} }}{2}\]
On simplifying, we get
\[ \Rightarrow t = \dfrac{{4 \pm \sqrt {144} }}{2}\]
\[ \Rightarrow t = \dfrac{{4 \pm 12}}{2}\]
So, we can write,
\[ \Rightarrow t = \dfrac{{4 + 12}}{2}\] or \[t = \dfrac{{4 - 12}}{2}\]
\[ \Rightarrow t = \dfrac{{16}}{2}\] or \[t = \dfrac{{ - 8}}{2}\]
On simplifying, we get
\[ \Rightarrow t = 8\] or \[t = - 4\]
When \[t = 8\], substituting back \[{y^2} - 6y = t\], we get
\[ \Rightarrow {y^2} - 6y = 8\]
\[ \Rightarrow {y^2} - 6y - 8 = 0\]
On solving, we get
\[ \Rightarrow y = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \times 1 \times \left( { - 8} \right)} }}{{2 \times 1}}\]
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {36 + 32} }}{2}\]
On simplifying, we get
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {68} }}{2}\]
\[ \Rightarrow y = \dfrac{{6 \pm 2\sqrt {17} }}{2}\]
On further simplification, we get
\[ \Rightarrow y = 3 \pm \sqrt {17} \]
Now, when \[t = - 4\], substituting back \[{y^2} - 6y = t\], we get
\[ \Rightarrow {y^2} - 6y = - 4\]
\[ \Rightarrow {y^2} - 6y + 4 = 0\]
On solving, we get
\[ \Rightarrow y = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \times 1 \times 4} }}{{2 \times 1}}\]
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {36 - 16} }}{2}\]
On simplifying, we get
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {20} }}{2}\]
\[ \Rightarrow y = \dfrac{{6 \pm 2\sqrt 5 }}{2}\]
On further simplification, we get
\[ \Rightarrow y = 3 \pm \sqrt 5 \]
Therefore, from the given options, the value of \[y\] which satisfies the equation \[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\] is \[y = 3 \pm \sqrt {17} \].
Hence, option D is correct.
Note: In this question, we have used the concept of quadratic equations. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Complete step by step answer:
We have to find the value of \[y\] satisfies the equation \[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\].
Let \[{y^2} - 6y = t\].
Putting this in the given equation, we get
\[ \Rightarrow 2{\left( t \right)^2} - 8\left( {t + 3} \right) - 40 = 0\]
On simplifying, we get
\[ \Rightarrow 2{t^2} - 8t - 24 - 40 = 0\]
\[ \Rightarrow 2{t^2} - 8 - 64 = 0\]
On dividing both the sides \[2\], we get
\[ \Rightarrow {t^2} - 4t - 32 = 0\]
As we know, for a quadratic equation, \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\], roots is given by: \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Using this, we get the roots of \[{t^2} - 4t - 32 = 0\] as,
\[ \Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times \left( 1 \right) \times \left( { - 32} \right)} }}{{2 \times 1}}\]
\[ \Rightarrow t = \dfrac{{4 \pm \sqrt {16 + 128} }}{2}\]
On simplifying, we get
\[ \Rightarrow t = \dfrac{{4 \pm \sqrt {144} }}{2}\]
\[ \Rightarrow t = \dfrac{{4 \pm 12}}{2}\]
So, we can write,
\[ \Rightarrow t = \dfrac{{4 + 12}}{2}\] or \[t = \dfrac{{4 - 12}}{2}\]
\[ \Rightarrow t = \dfrac{{16}}{2}\] or \[t = \dfrac{{ - 8}}{2}\]
On simplifying, we get
\[ \Rightarrow t = 8\] or \[t = - 4\]
When \[t = 8\], substituting back \[{y^2} - 6y = t\], we get
\[ \Rightarrow {y^2} - 6y = 8\]
\[ \Rightarrow {y^2} - 6y - 8 = 0\]
On solving, we get
\[ \Rightarrow y = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \times 1 \times \left( { - 8} \right)} }}{{2 \times 1}}\]
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {36 + 32} }}{2}\]
On simplifying, we get
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {68} }}{2}\]
\[ \Rightarrow y = \dfrac{{6 \pm 2\sqrt {17} }}{2}\]
On further simplification, we get
\[ \Rightarrow y = 3 \pm \sqrt {17} \]
Now, when \[t = - 4\], substituting back \[{y^2} - 6y = t\], we get
\[ \Rightarrow {y^2} - 6y = - 4\]
\[ \Rightarrow {y^2} - 6y + 4 = 0\]
On solving, we get
\[ \Rightarrow y = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \times 1 \times 4} }}{{2 \times 1}}\]
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {36 - 16} }}{2}\]
On simplifying, we get
\[ \Rightarrow y = \dfrac{{6 \pm \sqrt {20} }}{2}\]
\[ \Rightarrow y = \dfrac{{6 \pm 2\sqrt 5 }}{2}\]
On further simplification, we get
\[ \Rightarrow y = 3 \pm \sqrt 5 \]
Therefore, from the given options, the value of \[y\] which satisfies the equation \[2{\left( {{y^2} - 6y} \right)^2} - 8\left( {{y^2} - 6y + 3} \right) - 40 = 0\] is \[y = 3 \pm \sqrt {17} \].
Hence, option D is correct.
Note: In this question, we have used the concept of quadratic equations. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

What is the median of the first 10 natural numbers class 10 maths CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who is the executive head of the government APresident class 10 social science CBSE

