
Which of the following thermodynamic relations is correct?
a) $dG = VdP -SdT$
b) $dE = PdV + TdS$
c) $dH = -VdP + TdS$
d) $dG = VdP + SdT$
Answer
405.3k+ views
Hint : Gibbs Energy is the highest work that a thermodynamic system can operate at a fixed pressure and temperature. The reversible work in thermodynamics indicates a unique method in which work is taken out such that the system persists in perfect equilibrium with all its surroundings.
Complete step-by-step solution:
The relation between Gibbs free energy and enthalpy is given by:
$G = H - TS$
The relation of enthalpy is given by:
$H = E + PV$
Put the value of enthalpy in Gibbs free energy formula:
$G = E + PV - TS$
Differentiate above formula-
$dG = dE + PdV + VdP – TdS - SdT$……($1$)
As we know this relation,
$dq = dE - dW$…...($2$)
And work done is $dW = -PdV $ ..….($3$)
For reversible process,
$TdS = dq$ ……($4$)
Combining ($2$), ($3$) and ($4$)-
$TdS = dE + PdV$
$\implies dE + PdV – TdS = 0$……($5$)
From equation ($1$) and ($5$);
$dG = VdP -SdT$
Option (a) is correct.
Note: The Gibbs free energy estimate is the maximum number of non-expansion work obtained from a thermodynamically closed system. This maximum can be achieved only in a completely reversible manner. When a system changes reversibly from an initial position to a final position, the drop in Gibbs free energy equals the work performed by the system to its surroundings and subtracts the pressure forces' work.
Complete step-by-step solution:
The relation between Gibbs free energy and enthalpy is given by:
$G = H - TS$
The relation of enthalpy is given by:
$H = E + PV$
Put the value of enthalpy in Gibbs free energy formula:
$G = E + PV - TS$
Differentiate above formula-
$dG = dE + PdV + VdP – TdS - SdT$……($1$)
As we know this relation,
$dq = dE - dW$…...($2$)
And work done is $dW = -PdV $ ..….($3$)
For reversible process,
$TdS = dq$ ……($4$)
Combining ($2$), ($3$) and ($4$)-
$TdS = dE + PdV$
$\implies dE + PdV – TdS = 0$……($5$)
From equation ($1$) and ($5$);
$dG = VdP -SdT$
Option (a) is correct.
Note: The Gibbs free energy estimate is the maximum number of non-expansion work obtained from a thermodynamically closed system. This maximum can be achieved only in a completely reversible manner. When a system changes reversibly from an initial position to a final position, the drop in Gibbs free energy equals the work performed by the system to its surroundings and subtracts the pressure forces' work.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
