
Which of the following is true for the points X and Y if the coordinates of the midpoint P of \[\overline {XY} \] are \[\left( { - 2,3} \right)\]?
A) \[X\left( { - 4, - 2} \right)\] and \[Y\left( {0,4} \right)\]
B) \[X\left( { - 4,3} \right)\] and \[Y\left( {2,2} \right)\]
C) \[X\left( { - 6,2} \right)\] and \[Y\left( {2,4} \right)\]
D) \[X\left( {0,2} \right)\] and \[Y\left( { - 2,4} \right)\]
Answer
461.1k+ views
Hint: Here in this, we have to check the correct coordinates of X and Y point which have a midpoint P \[\left( { - 2,3} \right)\]. This can be solved by using a section formula \[P\left( {x,y} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\] where \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are the two point which the line segment join and, \[{m_1}:{m_2}\] are the ratios that point \[P\left( {x,y} \right)\] divides the line segment internally, the midpoint of line segments divides the line at ratio \[1:1\] respectively on substituting the values in formula and by simplification we get the required solution.
Complete step by step solution:
The coordinates of the point \[P\left( {x,y} \right)\] which divides the line segment joining the points \[A\left( {{x_1},{y_1}} \right)\]and \[B\left( {{x_2},{y_2}} \right)\] internally, in the ratio \[{m_1}:{m_2}\] are
\[P\left( {x,y} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\] This is known as the section formula.
Now, we check the points X and Y if the coordinates of the midpoints P of \[\overline {XY} \] are \[\left( { - 2,3} \right)\]. The midpoint of the line segment divides the line at ratio \[{m_1}:{m_2} = 1:1\].
Let us consider points \[X\left( { - 4, - 2} \right)\] and \[Y\left( {0,4} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 0 \right) + \left( 1 \right)\left( { - 4} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 4 \right) + \left( 1 \right)\left( { - 2} \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{1 - 4}}{2},\dfrac{{4 - 2}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{3}{2},\dfrac{2}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{3}{2},1} \right)\]
Which is not true
Now, consider points \[X\left( { - 4,3} \right)\] and \[Y\left( {2,2} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( { - 4} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( 3 \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{2 - 4}}{2},\dfrac{{2 + 3}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{2}{2},\dfrac{5}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - 1,\dfrac{5}{2}} \right)\]
Which is not true.
Now, consider points \[X\left( { - 6,2} \right)\] and \[Y\left( {2,4} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( { - 6} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 4 \right) + \left( 1 \right)\left( 2 \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{2 - 6}}{2},\dfrac{{4 + 2}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{4}{2},\dfrac{6}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - 2,3} \right)\]
Which is true.
Hence option (C) is correct.
Therefore, the midpoint of line of point \[X\left( { - 6,2} \right)\] and \[Y\left( {2,4} \right)\] is \[\left( { - 2,3} \right)\].
Note:
The section formula used to find any middle point of line segment. Remember if the midpoint of a line segment divides the line segment in the ratio \[{m_1}:{m_2} = 1:1\]. Therefore, the coordinates of the midpoint P of the join of the points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{1 \cdot {x_2} + 1 \cdot {x_1}}}{{1 + 1}},\dfrac{{1 \cdot {y_2} + 1 \cdot {y_1}}}{{1 + 1}}} \right)\]
On simplification, we get
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
This can also be used when the middle point is located at the midpoint of the line segment.
Complete step by step solution:
The coordinates of the point \[P\left( {x,y} \right)\] which divides the line segment joining the points \[A\left( {{x_1},{y_1}} \right)\]and \[B\left( {{x_2},{y_2}} \right)\] internally, in the ratio \[{m_1}:{m_2}\] are
\[P\left( {x,y} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\] This is known as the section formula.
Now, we check the points X and Y if the coordinates of the midpoints P of \[\overline {XY} \] are \[\left( { - 2,3} \right)\]. The midpoint of the line segment divides the line at ratio \[{m_1}:{m_2} = 1:1\].
Let us consider points \[X\left( { - 4, - 2} \right)\] and \[Y\left( {0,4} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 0 \right) + \left( 1 \right)\left( { - 4} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 4 \right) + \left( 1 \right)\left( { - 2} \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{1 - 4}}{2},\dfrac{{4 - 2}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{3}{2},\dfrac{2}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{3}{2},1} \right)\]
Which is not true
Now, consider points \[X\left( { - 4,3} \right)\] and \[Y\left( {2,2} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( { - 4} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( 3 \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{2 - 4}}{2},\dfrac{{2 + 3}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{2}{2},\dfrac{5}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - 1,\dfrac{5}{2}} \right)\]
Which is not true.
Now, consider points \[X\left( { - 6,2} \right)\] and \[Y\left( {2,4} \right)\], then by section formula
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{\left( 1 \right)\left( 2 \right) + \left( 1 \right)\left( { - 6} \right)}}{{1 + 1}},\dfrac{{\left( 1 \right)\left( 4 \right) + \left( 1 \right)\left( 2 \right)}}{{1 + 1}}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{2 - 6}}{2},\dfrac{{4 + 2}}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - \dfrac{4}{2},\dfrac{6}{2}} \right)\]
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( { - 2,3} \right)\]
Which is true.
Hence option (C) is correct.
Therefore, the midpoint of line of point \[X\left( { - 6,2} \right)\] and \[Y\left( {2,4} \right)\] is \[\left( { - 2,3} \right)\].
Note:
The section formula used to find any middle point of line segment. Remember if the midpoint of a line segment divides the line segment in the ratio \[{m_1}:{m_2} = 1:1\]. Therefore, the coordinates of the midpoint P of the join of the points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{1 \cdot {x_2} + 1 \cdot {x_1}}}{{1 + 1}},\dfrac{{1 \cdot {y_2} + 1 \cdot {y_1}}}{{1 + 1}}} \right)\]
On simplification, we get
\[ \Rightarrow \,\,P\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
This can also be used when the middle point is located at the midpoint of the line segment.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations

Choose the feminine form of the given noun Fox AFoxess class 10 english CBSE
