
Which of the following is not a tautology?
A. $p \to (p \vee q)$
B. $(p \wedge q) \to p$
C. \[(p \vee q) \vee (p \wedge \sim q)\]
D. $(p\, \vee \sim p)$
Answer
481.2k+ views
Hint:
In these types of the question first, we will try to simplify the statement to get the required answer and if we can’t find the answer through simplifying, we have to make the truth tables of every statement to find out the required answer.
Complete step by step solution:
According to the question, we have to find the choice which is not a tautology, and we know that a tautology is a statement that is true for every possible interpretation i.e. it is always true
So, checking for option A
$p \to (p \vee q)$
We know that \[(p \to q)\] is logically equivalent to \[ \sim p \vee q\]
\[ \Rightarrow \sim p \vee (p \vee q)\]
On using distributive law, we get,
$ \Rightarrow ( \sim p \vee p) \vee ( \sim p \vee q)$
We also know $( \sim p \vee p)$ is equal to a universal set which is always true.
\[(True) \vee ( \sim p \vee q)\]
And the union of a universal set with any other set is also a universal set which means it is always
True
So, this option A is a tautology
Checking for option B
$(p \wedge q) \to p$
We know that \[(p \to q)\] is logically equivalent to \[ \sim p \vee q\]
$ \Rightarrow \sim (p \wedge q) \vee p$
Since $ \sim (a \wedge b) = ( \sim a \vee \sim b)$ , so we get,
$ \Rightarrow ( \sim p \vee \sim q) \vee p$
On using distributive law, we get,
$ \Rightarrow ( \sim p \vee p) \vee ( \sim q \vee p)$
We also know $( \sim p \vee p\,\,)$ is equal to a universal set which is always true.
$True\,\, \vee ( \sim q \vee p)$
And the union of a universal set with any other set is also a universal set which means it is always
True
So, this option B is a tautology
Checking for option C
\[(p \vee q) \to (p \wedge ( \sim q))\]
Since, we know that \[a \to b = \sim a \vee b\] , we get
\[ \Rightarrow \sim (p \vee q) \vee (p \wedge ( \sim q))\]
Using De Morgan’s law, we get
\[ \Rightarrow ( \sim p \wedge \sim q) \vee (p \wedge \sim q)\]
Taking \[ \sim q\] common, we get
\[ \Rightarrow ( \sim p \vee p) \wedge \sim q\]
Let \[( \sim p \vee p) = t\] , so we have
\[ \Rightarrow t \wedge \sim q\]
As,
\[ \Rightarrow \sim q \ne t\]
Since we cannot say that \[ \sim q\] is always true as if q is true then \[ \sim q\] is false, hence
\[ \sim q\, \ne \,True\]
So, this option C is not a tautology
Checking for option D
$(p\,\, \vee \sim p)$
We know $(p\,\, \vee \sim p)$ is equal to a universal set which is always $True$.
True
So, this option D is a tautology.
Note:
Alternate Solution
We can make truth tables and if all the columns of the final statement are true then it is a tautology
For Option A
Since all the columns of the final statement are true, it is a tautology
For Option B
Since all the columns of the final statement are true, it is a tautology
For Option C
Since all the columns of the final statement are NOT true, it is a NOT tautology
For Option D
Since all the columns of the final statement are true, it is a tautology
Hence, we get the answer as Option D.
In these types of the question first, we will try to simplify the statement to get the required answer and if we can’t find the answer through simplifying, we have to make the truth tables of every statement to find out the required answer.
Complete step by step solution:
According to the question, we have to find the choice which is not a tautology, and we know that a tautology is a statement that is true for every possible interpretation i.e. it is always true
So, checking for option A
$p \to (p \vee q)$
We know that \[(p \to q)\] is logically equivalent to \[ \sim p \vee q\]
\[ \Rightarrow \sim p \vee (p \vee q)\]
On using distributive law, we get,
$ \Rightarrow ( \sim p \vee p) \vee ( \sim p \vee q)$
We also know $( \sim p \vee p)$ is equal to a universal set which is always true.
\[(True) \vee ( \sim p \vee q)\]
And the union of a universal set with any other set is also a universal set which means it is always
True
So, this option A is a tautology
Checking for option B
$(p \wedge q) \to p$
We know that \[(p \to q)\] is logically equivalent to \[ \sim p \vee q\]
$ \Rightarrow \sim (p \wedge q) \vee p$
Since $ \sim (a \wedge b) = ( \sim a \vee \sim b)$ , so we get,
$ \Rightarrow ( \sim p \vee \sim q) \vee p$
On using distributive law, we get,
$ \Rightarrow ( \sim p \vee p) \vee ( \sim q \vee p)$
We also know $( \sim p \vee p\,\,)$ is equal to a universal set which is always true.
$True\,\, \vee ( \sim q \vee p)$
And the union of a universal set with any other set is also a universal set which means it is always
True
So, this option B is a tautology
Checking for option C
\[(p \vee q) \to (p \wedge ( \sim q))\]
Since, we know that \[a \to b = \sim a \vee b\] , we get
\[ \Rightarrow \sim (p \vee q) \vee (p \wedge ( \sim q))\]
Using De Morgan’s law, we get
\[ \Rightarrow ( \sim p \wedge \sim q) \vee (p \wedge \sim q)\]
Taking \[ \sim q\] common, we get
\[ \Rightarrow ( \sim p \vee p) \wedge \sim q\]
Let \[( \sim p \vee p) = t\] , so we have
\[ \Rightarrow t \wedge \sim q\]
As,
\[ \Rightarrow \sim q \ne t\]
Since we cannot say that \[ \sim q\] is always true as if q is true then \[ \sim q\] is false, hence
\[ \sim q\, \ne \,True\]
So, this option C is not a tautology
Checking for option D
$(p\,\, \vee \sim p)$
We know $(p\,\, \vee \sim p)$ is equal to a universal set which is always $True$.
True
So, this option D is a tautology.
Note:
Alternate Solution
We can make truth tables and if all the columns of the final statement are true then it is a tautology
For Option A
p | q | $(p\,\, \vee q)$ | $p \to (p\,\, \vee \,q)$ |
T | T | T | T |
T | F | T | T |
F | T | T | T |
F | F | F | T |
Since all the columns of the final statement are true, it is a tautology
For Option B
p | q | $(p\,\, \vee q)$ | $p \to (p\,\, \vee q)$ |
T | T | T | T |
T | F | T | T |
F | T | T | T |
F | F | F | T |
Since all the columns of the final statement are true, it is a tautology
For Option C
p | q | $(p\,\, \vee q)$ | $ \sim q$ | $(p \wedge \sim q)$ | \[(p \vee q) \vee (p\,\, \wedge \sim q)\] |
T | T | T | F | F | T |
T | F | T | T | T | T |
F | T | T | F | F | T |
F | F | F | T | F | F |
Since all the columns of the final statement are NOT true, it is a NOT tautology
For Option D
p | q | $(p\,\, \vee q)$ |
T | F | T |
F | T | T |
Since all the columns of the final statement are true, it is a tautology
Hence, we get the answer as Option D.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
