
Which of the following is correct?
(a)$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
(b)$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
(c)$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
(d)$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right)$
Answer
533.1k+ views
Hint: We can find the answer by expanding on both left hand side and right hand side. The equation whose LHS=RHS will be the right option. So take each option and simplify the LHS by multiplying the terms and expressing in simplest form.
Complete step by step solution:
First, taking the equation from option (a), we get,$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}-24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( i \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( ii \right) \\
\end{align}$
Now, comparing equations (i) and (ii), we can clearly see that $LHS=RHS$ , Therefore, the option (a) is the correct option.
Next, let us check the remaining options to make sure they are not correct.
Taking the equation from option (b), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}+24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( iii \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( iv \right) \\
\end{align}$
Now, comparing equations (iii) and (iv), we can clearly see that $LHS\ne RHS$ , Therefore, the option (b) is an incorrect option. Now, moving on to the next option,
Taking the equation from option (c), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}-24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( v \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-10\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( vi \right) \\
\end{align}$
Now, comparing equations (v) and (vi), we can clearly see that $LHS\ne RHS$ , Therefore, the option (c) is an incorrect option. Now, moving on to the final option,
Taking the equation from option (d), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}+24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( vii \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( viii \right) \\
\end{align}$
Now, comparing equations (vii) and (viii), we can clearly see that $LHS\ne RHS$ , Therefore, the option (d) is an incorrect option.
So, the correct answer is “Option A”.
Note: We can solve the question in a simpler way by this method. Substitute some constant A as $\sqrt[3]{7}+\sqrt[7]{3}$. That is $A=\sqrt[3]{7}+\sqrt[7]{3}$ . Now, using this value of A, we can check the options.
First take option (a), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A-2 \right) \right\}-24=\left( A+4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}-2A-24={{A}^{2}}-6A+4A-24 \\
& \Rightarrow {{A}^{2}}-2A-24={{A}^{2}}-2A-24 \\
& \Rightarrow LHS=RHS \\
\end{align}$
Therefore, the option (a) is the correct option. Next, let us check the remaining options to make sure they are not correct.
Take option (b), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A+2 \right) \right\}+24=\left( A+4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}+2A+24={{A}^{2}}-6A+4A-24 \\
& \Rightarrow {{A}^{2}}+2A+24={{A}^{2}}-2A-24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (b) is not a correct option.
Take option (c), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A+2 \right) \right\}-24=\left( A-4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}+2A-24={{A}^{2}}-6A-4A+24 \\
& \Rightarrow {{A}^{2}}+2A-24={{A}^{2}}-10A+24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (c) is not a correct option.
Take option (d), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A-2 \right) \right\}+24=\left( A-4 \right)\left( A+6 \right) \\
& \Rightarrow {{A}^{2}}-2A+24={{A}^{2}}+6A-4A-24 \\
& \Rightarrow {{A}^{2}}-2A+24={{A}^{2}}+2A-24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (d) is not a correct option.
Complete step by step solution:
First, taking the equation from option (a), we get,$\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}-24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( i \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( ii \right) \\
\end{align}$
Now, comparing equations (i) and (ii), we can clearly see that $LHS=RHS$ , Therefore, the option (a) is the correct option.
Next, let us check the remaining options to make sure they are not correct.
Taking the equation from option (b), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}+24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( iii \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( iv \right) \\
\end{align}$
Now, comparing equations (iii) and (iv), we can clearly see that $LHS\ne RHS$ , Therefore, the option (b) is an incorrect option. Now, moving on to the next option,
Taking the equation from option (c), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}-24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( v \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-10\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( vi \right) \\
\end{align}$
Now, comparing equations (v) and (vi), we can clearly see that $LHS\ne RHS$ , Therefore, the option (c) is an incorrect option. Now, moving on to the final option,
Taking the equation from option (d), we get, $\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right)$
LHS becomes,
$\begin{align}
& LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24 \\
& \Rightarrow LHS=\left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right) \right\}+24 \\
& \Rightarrow LHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+24......\left( vii \right) \\
\end{align}$
RHS becomes,
$\begin{align}
& RHS=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+6\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-4\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-\left( 4\times 6 \right) \\
& \Rightarrow RHS=\left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3} \right)+2\left( \sqrt[3]{7}+\sqrt[7]{3} \right)-24......\left( viii \right) \\
\end{align}$
Now, comparing equations (vii) and (viii), we can clearly see that $LHS\ne RHS$ , Therefore, the option (d) is an incorrect option.
So, the correct answer is “Option A”.
Note: We can solve the question in a simpler way by this method. Substitute some constant A as $\sqrt[3]{7}+\sqrt[7]{3}$. That is $A=\sqrt[3]{7}+\sqrt[7]{3}$ . Now, using this value of A, we can check the options.
First take option (a), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A-2 \right) \right\}-24=\left( A+4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}-2A-24={{A}^{2}}-6A+4A-24 \\
& \Rightarrow {{A}^{2}}-2A-24={{A}^{2}}-2A-24 \\
& \Rightarrow LHS=RHS \\
\end{align}$
Therefore, the option (a) is the correct option. Next, let us check the remaining options to make sure they are not correct.
Take option (b), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}+4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A+2 \right) \right\}+24=\left( A+4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}+2A+24={{A}^{2}}-6A+4A-24 \\
& \Rightarrow {{A}^{2}}+2A+24={{A}^{2}}-2A-24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (b) is not a correct option.
Take option (c), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+2 \right) \right\}-24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A+2 \right) \right\}-24=\left( A-4 \right)\left( A-6 \right) \\
& \Rightarrow {{A}^{2}}+2A-24={{A}^{2}}-6A-4A+24 \\
& \Rightarrow {{A}^{2}}+2A-24={{A}^{2}}-10A+24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (c) is not a correct option.
Take option (d), use A wherever necessary.
$\begin{align}
& \left\{ \left( \sqrt[3]{7}+\sqrt[7]{3} \right)\left( \sqrt[3]{7}+\sqrt[7]{3}-2 \right) \right\}+24=\left( \sqrt[3]{7}+\sqrt[7]{3}-4 \right)\left( \sqrt[3]{7}+\sqrt[7]{3}+6 \right) \\
& \Rightarrow \left\{ \left( A \right)\left( A-2 \right) \right\}+24=\left( A-4 \right)\left( A+6 \right) \\
& \Rightarrow {{A}^{2}}-2A+24={{A}^{2}}+6A-4A-24 \\
& \Rightarrow {{A}^{2}}-2A+24={{A}^{2}}+2A-24 \\
& \Rightarrow LHS\ne RHS \\
\end{align}$
Therefore, the option (d) is not a correct option.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

