
Which of the following is an even function
(a) \[\dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\]
(b) \[f(x) = \dfrac{{{a^x} + 1}}{{{a^x} - 1}}\]
(c) \[f(x) = x\dfrac{{{a^x} - 1}}{{{a^{ - x}} + 1}}\]
(d) \[f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)\]
Answer
515.4k+ views
Hint: If a given function \[f(x)\] satisfied \[f( - x) = f(x)\] for all \[x\] in the domain of f, then we say that \[f(x)\] is an even function, otherwise we say that \[f(x)\] is not an even function. To check that we have to replace \[x\] by \[ - x\] in the given function \[f(x)\] . Then check if \[f( - x) = f(x)\] is satisfied or not, if it is satisfied then we say that \[f(x)\] is an even function.
Complete step-by-step answer:
Option (a)
Given \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] -----(1)
Replace \[x\] by \[ - x\] in equation (1), we get
\[f( - x) = \dfrac{{{a^{ - x}} + {a^{ - ( - x)}}}}{{{a^{ - x}} - {a^{ - ( - x)}}}} = - \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}} = - f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] is not an even function.
Hence, Option (a) is incorrect.
Option (b)
Given \[f(x) = \dfrac{{{a^x} + 1}}{{{a^x} - 1}}\] -----(2)
Replace \[x\] by \[ - x\] in equation (2), we get
\[f( - x) = \dfrac{{{a^{ - x}} + 1}}{{{a^{ - x}} - 1}} = \dfrac{{\dfrac{{{a^x} + 1}}{{{a^x}}}}}{{\dfrac{{1 - {a^x}}}{{{a^x}}}}} = - f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + 1}}{{{a^x} - 1}}\] is not an even function.
Hence, Option (b) is incorrect.
Option (c)
Given \[f(x) = x\dfrac{{{a^x} - 1}}{{{a^{ - x}} + 1}}\] ------(3)
Replace \[x\] by \[ - x\] in equation (3), we get
\[f( - x) = \left( { - x} \right)\dfrac{{{a^{ - x}} - 1}}{{{a^{ - ( - x)}} + 1}} = - x\dfrac{{\dfrac{{1 - {a^x}}}{{{a^x}}}}}{{{a^x} + 1}} = \dfrac{1}{{{a^{2x}}}}f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] is not an even function.
Hence, Option (c) is incorrect.
Option (d)
Given \[f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)\] ------(4)
Replace \[x\] by \[ - x\] in equation (4), we get
\[f( - x) = {\log _2}\left( { - x + \sqrt {{x^2} + 1} } \right) = {\log _2}\left( {\left( { - x + \sqrt {{x^2} + 1} } \right) \times \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + \sqrt {{x^2} + 1} }}} \right) = - \log \left( {x + \sqrt {{x^2} + 1} } \right) = - f(x)\]
therefore \[f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)\] is not an even function.
Hence, Option (d) is incorrect.
So, the correct answer is “Option d”.
Note: If a given function \[f(x)\] satisfied \[f( - x) = - f(x)\] for all \[x\] in the domain of f, then we say that \[f(x)\] is an odd function, otherwise we say that \[f(x)\] is not an odd function. To check that we have to replace \[x\] by \[ - x\] in the given function \[f(x)\] . Then check if \[f( - x) = - f(x)\] is satisfied or not, if it is satisfied then we say that \[f(x)\] is an odd function.
Complete step-by-step answer:
Option (a)
Given \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] -----(1)
Replace \[x\] by \[ - x\] in equation (1), we get
\[f( - x) = \dfrac{{{a^{ - x}} + {a^{ - ( - x)}}}}{{{a^{ - x}} - {a^{ - ( - x)}}}} = - \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}} = - f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] is not an even function.
Hence, Option (a) is incorrect.
Option (b)
Given \[f(x) = \dfrac{{{a^x} + 1}}{{{a^x} - 1}}\] -----(2)
Replace \[x\] by \[ - x\] in equation (2), we get
\[f( - x) = \dfrac{{{a^{ - x}} + 1}}{{{a^{ - x}} - 1}} = \dfrac{{\dfrac{{{a^x} + 1}}{{{a^x}}}}}{{\dfrac{{1 - {a^x}}}{{{a^x}}}}} = - f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + 1}}{{{a^x} - 1}}\] is not an even function.
Hence, Option (b) is incorrect.
Option (c)
Given \[f(x) = x\dfrac{{{a^x} - 1}}{{{a^{ - x}} + 1}}\] ------(3)
Replace \[x\] by \[ - x\] in equation (3), we get
\[f( - x) = \left( { - x} \right)\dfrac{{{a^{ - x}} - 1}}{{{a^{ - ( - x)}} + 1}} = - x\dfrac{{\dfrac{{1 - {a^x}}}{{{a^x}}}}}{{{a^x} + 1}} = \dfrac{1}{{{a^{2x}}}}f(x)\]
therefore \[f(x) = \dfrac{{{a^x} + {a^{ - x}}}}{{{a^x} - {a^{ - x}}}}\] is not an even function.
Hence, Option (c) is incorrect.
Option (d)
Given \[f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)\] ------(4)
Replace \[x\] by \[ - x\] in equation (4), we get
\[f( - x) = {\log _2}\left( { - x + \sqrt {{x^2} + 1} } \right) = {\log _2}\left( {\left( { - x + \sqrt {{x^2} + 1} } \right) \times \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + \sqrt {{x^2} + 1} }}} \right) = - \log \left( {x + \sqrt {{x^2} + 1} } \right) = - f(x)\]
therefore \[f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)\] is not an even function.
Hence, Option (d) is incorrect.
So, the correct answer is “Option d”.
Note: If a given function \[f(x)\] satisfied \[f( - x) = - f(x)\] for all \[x\] in the domain of f, then we say that \[f(x)\] is an odd function, otherwise we say that \[f(x)\] is not an odd function. To check that we have to replace \[x\] by \[ - x\] in the given function \[f(x)\] . Then check if \[f( - x) = - f(x)\] is satisfied or not, if it is satisfied then we say that \[f(x)\] is an odd function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

