
Which of the following is a fourth root of $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ ?
(A) $cis\left( {\dfrac{\pi }{{12}}} \right)$
(B) $cis\left( {\dfrac{\pi }{2}} \right)$
(C) $cis\left( {\dfrac{\pi }{6}} \right)$
(D) $cis\left( {\dfrac{\pi }{3}} \right)$
Answer
613.8k+ views
Hint: Start with converting the complex number in polar form. And then apply De Moivre’s theorem to take its fourth root. Finally convert the resulting complex number in $cis\theta $ notation to get it in the desired form.
Complete Step-by-Step solution:
The given complex number is $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$. Let it be z. So, we have:
$ \Rightarrow z = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
We know that modulus of any complex number $x + iy$ is $\sqrt {{x^2} + {y^2}} $. So, modulus of z is:
$
\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} , \\
\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{2} + \dfrac{3}{4}} , \\
\Rightarrow \left| z \right| = 1 \\
$
Similarly, the argument of the complex number is ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$. So, argument of z is:
$
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}} \right), \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\sqrt 3 } \right), \\
\Rightarrow \theta = \dfrac{\pi }{3} \\
$
Thus the polar form of z is:
$
\Rightarrow z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right), \\
\Rightarrow z = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3} .....(i) \\
$
z can also be written as:
$ \Rightarrow z = cis\dfrac{\pi }{3}$
We have to find out the fourth root of z. So, we have:
\[ \Rightarrow {z^{\dfrac{1}{4}}} = {\left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)^{\dfrac{1}{4}}}{\text{ }}.....(i)\]
According to De Moivre’s theorem:
\[ \Rightarrow {\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta \]
Using this theorem in equation $(i)$, we’ll get:
\[
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{3 \times 4}} + i\sin \dfrac{\pi }{{3 \times 4}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
Thus, the fourth root of the complex number is \[cis\left( {\dfrac{\pi }{{12}}} \right)\]. (A) is the correct option.
Note: The complex number \[\left( {\cos \theta + i\sin \theta } \right)\] can also be written as $r{e^{i\theta }}$, where r is the modulus of the complex number. Using this for the above complex number:
\[
\Rightarrow z = {e^{i\dfrac{\pi }{3}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {\left( {{e^{i\dfrac{\pi }{3}}}} \right)^{\dfrac{1}{4}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {e^{i\dfrac{\pi }{{12}}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
We used different methods but the end result is the same.
Complete Step-by-Step solution:
The given complex number is $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$. Let it be z. So, we have:
$ \Rightarrow z = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
We know that modulus of any complex number $x + iy$ is $\sqrt {{x^2} + {y^2}} $. So, modulus of z is:
$
\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} , \\
\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{2} + \dfrac{3}{4}} , \\
\Rightarrow \left| z \right| = 1 \\
$
Similarly, the argument of the complex number is ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$. So, argument of z is:
$
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}} \right), \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\sqrt 3 } \right), \\
\Rightarrow \theta = \dfrac{\pi }{3} \\
$
Thus the polar form of z is:
$
\Rightarrow z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right), \\
\Rightarrow z = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3} .....(i) \\
$
z can also be written as:
$ \Rightarrow z = cis\dfrac{\pi }{3}$
We have to find out the fourth root of z. So, we have:
\[ \Rightarrow {z^{\dfrac{1}{4}}} = {\left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)^{\dfrac{1}{4}}}{\text{ }}.....(i)\]
According to De Moivre’s theorem:
\[ \Rightarrow {\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta \]
Using this theorem in equation $(i)$, we’ll get:
\[
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{3 \times 4}} + i\sin \dfrac{\pi }{{3 \times 4}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
Thus, the fourth root of the complex number is \[cis\left( {\dfrac{\pi }{{12}}} \right)\]. (A) is the correct option.
Note: The complex number \[\left( {\cos \theta + i\sin \theta } \right)\] can also be written as $r{e^{i\theta }}$, where r is the modulus of the complex number. Using this for the above complex number:
\[
\Rightarrow z = {e^{i\dfrac{\pi }{3}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {\left( {{e^{i\dfrac{\pi }{3}}}} \right)^{\dfrac{1}{4}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {e^{i\dfrac{\pi }{{12}}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
We used different methods but the end result is the same.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

