
Which of the following is a fourth root of $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ ?
(A) $cis\left( {\dfrac{\pi }{{12}}} \right)$
(B) $cis\left( {\dfrac{\pi }{2}} \right)$
(C) $cis\left( {\dfrac{\pi }{6}} \right)$
(D) $cis\left( {\dfrac{\pi }{3}} \right)$
Answer
586.8k+ views
Hint: Start with converting the complex number in polar form. And then apply De Moivre’s theorem to take its fourth root. Finally convert the resulting complex number in $cis\theta $ notation to get it in the desired form.
Complete Step-by-Step solution:
The given complex number is $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$. Let it be z. So, we have:
$ \Rightarrow z = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
We know that modulus of any complex number $x + iy$ is $\sqrt {{x^2} + {y^2}} $. So, modulus of z is:
$
\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} , \\
\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{2} + \dfrac{3}{4}} , \\
\Rightarrow \left| z \right| = 1 \\
$
Similarly, the argument of the complex number is ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$. So, argument of z is:
$
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}} \right), \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\sqrt 3 } \right), \\
\Rightarrow \theta = \dfrac{\pi }{3} \\
$
Thus the polar form of z is:
$
\Rightarrow z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right), \\
\Rightarrow z = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3} .....(i) \\
$
z can also be written as:
$ \Rightarrow z = cis\dfrac{\pi }{3}$
We have to find out the fourth root of z. So, we have:
\[ \Rightarrow {z^{\dfrac{1}{4}}} = {\left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)^{\dfrac{1}{4}}}{\text{ }}.....(i)\]
According to De Moivre’s theorem:
\[ \Rightarrow {\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta \]
Using this theorem in equation $(i)$, we’ll get:
\[
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{3 \times 4}} + i\sin \dfrac{\pi }{{3 \times 4}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
Thus, the fourth root of the complex number is \[cis\left( {\dfrac{\pi }{{12}}} \right)\]. (A) is the correct option.
Note: The complex number \[\left( {\cos \theta + i\sin \theta } \right)\] can also be written as $r{e^{i\theta }}$, where r is the modulus of the complex number. Using this for the above complex number:
\[
\Rightarrow z = {e^{i\dfrac{\pi }{3}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {\left( {{e^{i\dfrac{\pi }{3}}}} \right)^{\dfrac{1}{4}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {e^{i\dfrac{\pi }{{12}}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
We used different methods but the end result is the same.
Complete Step-by-Step solution:
The given complex number is $\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$. Let it be z. So, we have:
$ \Rightarrow z = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
We know that modulus of any complex number $x + iy$ is $\sqrt {{x^2} + {y^2}} $. So, modulus of z is:
$
\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} , \\
\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{2} + \dfrac{3}{4}} , \\
\Rightarrow \left| z \right| = 1 \\
$
Similarly, the argument of the complex number is ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$. So, argument of z is:
$
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}} \right), \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {\sqrt 3 } \right), \\
\Rightarrow \theta = \dfrac{\pi }{3} \\
$
Thus the polar form of z is:
$
\Rightarrow z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right), \\
\Rightarrow z = \cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3} .....(i) \\
$
z can also be written as:
$ \Rightarrow z = cis\dfrac{\pi }{3}$
We have to find out the fourth root of z. So, we have:
\[ \Rightarrow {z^{\dfrac{1}{4}}} = {\left( {\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}} \right)^{\dfrac{1}{4}}}{\text{ }}.....(i)\]
According to De Moivre’s theorem:
\[ \Rightarrow {\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta \]
Using this theorem in equation $(i)$, we’ll get:
\[
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{3 \times 4}} + i\sin \dfrac{\pi }{{3 \times 4}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
Thus, the fourth root of the complex number is \[cis\left( {\dfrac{\pi }{{12}}} \right)\]. (A) is the correct option.
Note: The complex number \[\left( {\cos \theta + i\sin \theta } \right)\] can also be written as $r{e^{i\theta }}$, where r is the modulus of the complex number. Using this for the above complex number:
\[
\Rightarrow z = {e^{i\dfrac{\pi }{3}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {\left( {{e^{i\dfrac{\pi }{3}}}} \right)^{\dfrac{1}{4}}}, \\
\Rightarrow {z^{\dfrac{1}{4}}} = {e^{i\dfrac{\pi }{{12}}}} = cis\left( {\dfrac{\pi }{{12}}} \right) \\
\]
We used different methods but the end result is the same.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

