
Which color of light has the highest energy?
a).Violet
b).Green
c).Yellow
d).Orange
e).Red
Answer
558k+ views
Hint: You must have seen red lights are always used in places where caution is needed such as construction sites, traffic lights, etc. Have you wondered what makes it the most suitable color for this?
Complete answer:
Energy can also be used to measure visible light. Frequency is an important property of all waves and the amount of energy contained in each wave is related in proportion to its frequency. The higher the frequency of the wave, the more energy a wave has and vice versa. In our case of visible light, the highest frequency color, which is violet, which means it will have the highest energy. Similarly, red has the lowest frequency, so it will have the least energy.
Mathematically,
\[c=\nu \lambda \]
where, c = speed of light in a vacuum.
\[\nu \] = frequency
\[\lambda \] = wavelength
Now on rearranging,
\[\nu =\dfrac{c}{\lambda }\]
We can see that wavelength is indirectly proportional frequency i.e. as wavelength decreases, frequency increases. Energy (E) can be written as,
\[E=\hbar \nu \]
Where,\[\hbar \] = Planck's constant.
We can conclude that as the wavelength decreases, frequency increases which leads to increase in energy.
Looking at our option, wavelength of each spectrum is:
Violet = 380-450 nm
Green = 495-570 nm
Yellow = 570-590 nm
Orange = 590-620 nm
Red = 620-750 nm
Therefore, the correct option is (a).
Note:
As we can see red light has the highest wavelength, it scatters the least, which is why it can travel longer distances through rain, fog or dust and reach our eyes effectively.
Complete answer:
Energy can also be used to measure visible light. Frequency is an important property of all waves and the amount of energy contained in each wave is related in proportion to its frequency. The higher the frequency of the wave, the more energy a wave has and vice versa. In our case of visible light, the highest frequency color, which is violet, which means it will have the highest energy. Similarly, red has the lowest frequency, so it will have the least energy.
Mathematically,
\[c=\nu \lambda \]
where, c = speed of light in a vacuum.
\[\nu \] = frequency
\[\lambda \] = wavelength
Now on rearranging,
\[\nu =\dfrac{c}{\lambda }\]
We can see that wavelength is indirectly proportional frequency i.e. as wavelength decreases, frequency increases. Energy (E) can be written as,
\[E=\hbar \nu \]
Where,\[\hbar \] = Planck's constant.
We can conclude that as the wavelength decreases, frequency increases which leads to increase in energy.
Looking at our option, wavelength of each spectrum is:
Violet = 380-450 nm
Green = 495-570 nm
Yellow = 570-590 nm
Orange = 590-620 nm
Red = 620-750 nm
Therefore, the correct option is (a).
Note:
As we can see red light has the highest wavelength, it scatters the least, which is why it can travel longer distances through rain, fog or dust and reach our eyes effectively.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

