
Which atomic orbitals of which subshells have a dumbbell shape?
Answer
457.2k+ views
Hint: We need to study atomic orbitals and their shapes in regards to subshells. For a better understanding of the geometry of electron orbitals, quantum theory and other characteristics of electron orbitals are used.
Complete answer:
One of three quantum numbers used to characterise an orbital, the main quantum number is one of the three quantum numbers. Unlike a regular orbit, atomic orbitals are broad regions in an atom where electrons are most likely to reside. When an electron is found in three-dimensional space surrounding a nucleus, a quantum mechanical model determines its probability. The angular momentum quantum number, $l$, is another quantum number. It is an integer that takes the values\[l{\text{ }} = {\text{ }}0,{\text{ }}1,{\text{ }}2\],..., \[n{\text{ }}-{\text{ }}1\]and specifies the form of the orbital. This means that an orbital with \[n{\text{ }} = {\text{ }}1\]may only have one $l$ value, \[l{\text{ }} = {\text{ }}0\], but an orbital with \[n{\text{ }} = {\text{ }}2\]can have \[l{\text{ }} = {\text{ }}0\]and\[l{\text{ }} = {\text{ }}1\], and so on. The orbital's overall size and energy are defined by the main quantum number. The orbital's form is determined by the$l$ value. A subshell is formed by orbitals with the same $l$value. Furthermore, the angular momentum of an electron in this orbital is proportional to the angular momentum quantum number.
The $s$ subshells have a sphere-like form. The $s$orbital is present in both the $1n$ and $2n$ main shells, although the sphere in the $2n$ orbital is bigger. Each of the spheres represents a single orbital. Three dumbbell-shaped orbitals make up $p$ subshells. Shell $1$ does not have a $p$ subshell, but principal shell $2n$ does.
Fig: dumbbell-shaped orbitals make up $p$ subshells (x,y and z axis)
Note:
Note that $s$ orbitals are orbitals with\[l{\text{ }} = {\text{ }}0\].The $p$ orbitals are represented by the value \[l{\text{ }} = {\text{ }}1.\]$p$ orbitals form a $p$ subshell for a given $n$ (e.g., \[3p\]for\[n{\text{ }} = {\text{ }}3\]). The \[d\]orbitals are those with\[l{\text{ }} = {\text{ }}2\], followed by the \[f - ,{\text{ }}g - ,\]and \[h - \]orbitals with \[l{\text{ }} = {\text{ }}3,{\text{ }}4,{\text{ }}5,\]and higher values.
Complete answer:
One of three quantum numbers used to characterise an orbital, the main quantum number is one of the three quantum numbers. Unlike a regular orbit, atomic orbitals are broad regions in an atom where electrons are most likely to reside. When an electron is found in three-dimensional space surrounding a nucleus, a quantum mechanical model determines its probability. The angular momentum quantum number, $l$, is another quantum number. It is an integer that takes the values\[l{\text{ }} = {\text{ }}0,{\text{ }}1,{\text{ }}2\],..., \[n{\text{ }}-{\text{ }}1\]and specifies the form of the orbital. This means that an orbital with \[n{\text{ }} = {\text{ }}1\]may only have one $l$ value, \[l{\text{ }} = {\text{ }}0\], but an orbital with \[n{\text{ }} = {\text{ }}2\]can have \[l{\text{ }} = {\text{ }}0\]and\[l{\text{ }} = {\text{ }}1\], and so on. The orbital's overall size and energy are defined by the main quantum number. The orbital's form is determined by the$l$ value. A subshell is formed by orbitals with the same $l$value. Furthermore, the angular momentum of an electron in this orbital is proportional to the angular momentum quantum number.
The $s$ subshells have a sphere-like form. The $s$orbital is present in both the $1n$ and $2n$ main shells, although the sphere in the $2n$ orbital is bigger. Each of the spheres represents a single orbital. Three dumbbell-shaped orbitals make up $p$ subshells. Shell $1$ does not have a $p$ subshell, but principal shell $2n$ does.
Fig: dumbbell-shaped orbitals make up $p$ subshells (x,y and z axis)
Note:
Note that $s$ orbitals are orbitals with\[l{\text{ }} = {\text{ }}0\].The $p$ orbitals are represented by the value \[l{\text{ }} = {\text{ }}1.\]$p$ orbitals form a $p$ subshell for a given $n$ (e.g., \[3p\]for\[n{\text{ }} = {\text{ }}3\]). The \[d\]orbitals are those with\[l{\text{ }} = {\text{ }}2\], followed by the \[f - ,{\text{ }}g - ,\]and \[h - \]orbitals with \[l{\text{ }} = {\text{ }}3,{\text{ }}4,{\text{ }}5,\]and higher values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

