
What is the Pythagorean identity?
Answer
528.6k+ views
Hint: We first describe the Pythagorean identity with respect to the right-angle triangle. We use the formula of ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$. Putting the values, we get ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$. Then we use the angles of the triangles to denote the sides and express it in the form of trigonometric ratios. We get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Complete step by step answer:
The Pythagorean identity is about the trigonometric identity that is used n case of right-angle triangle.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.
We express it for $\Delta ABC$ where $\angle B=\dfrac{\pi }{2}$.
We have the expression for the triangle as ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$.
For $\Delta ABC$, $base=BC=b,height=AB=a,hypotenuse=AC=c$
Applying the rule, we get ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$.
We can also express it with respect to the angle $\angle BCA$. Let $\angle BCA=\theta $.
The equation ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$ can be simplified
$\begin{align}
& {{a}^{2}}+{{b}^{2}}={{c}^{2}} \\
& \Rightarrow {{\left( \dfrac{a}{c} \right)}^{2}}+{{\left( \dfrac{b}{c} \right)}^{2}}=1 \\
\end{align}$
With respect to the angle $\angle BCA=\theta $, we have $\dfrac{a}{c}=\sin \theta ,\dfrac{b}{c}=\cos \theta $.
Replacing the values, we get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
There are many reformed versions of the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Dividing with ${{\cos }^{2}}\theta $, we got \[{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \].
Dividing with ${{\sin }^{2}}\theta $, we got \[{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta \].
Note: The concept of Pythagorean identity is similar for both angles and sides. The representation of the triangle has to be for the right-angle triangle.
Complete step by step answer:
The Pythagorean identity is about the trigonometric identity that is used n case of right-angle triangle.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.
We express it for $\Delta ABC$ where $\angle B=\dfrac{\pi }{2}$.
We have the expression for the triangle as ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$.
For $\Delta ABC$, $base=BC=b,height=AB=a,hypotenuse=AC=c$
Applying the rule, we get ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$.
We can also express it with respect to the angle $\angle BCA$. Let $\angle BCA=\theta $.
The equation ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$ can be simplified
$\begin{align}
& {{a}^{2}}+{{b}^{2}}={{c}^{2}} \\
& \Rightarrow {{\left( \dfrac{a}{c} \right)}^{2}}+{{\left( \dfrac{b}{c} \right)}^{2}}=1 \\
\end{align}$
With respect to the angle $\angle BCA=\theta $, we have $\dfrac{a}{c}=\sin \theta ,\dfrac{b}{c}=\cos \theta $.
Replacing the values, we get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
There are many reformed versions of the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Dividing with ${{\cos }^{2}}\theta $, we got \[{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \].
Dividing with ${{\sin }^{2}}\theta $, we got \[{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta \].
Note: The concept of Pythagorean identity is similar for both angles and sides. The representation of the triangle has to be for the right-angle triangle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

