
What is the Pythagorean identity?
Answer
514.5k+ views
Hint: We first describe the Pythagorean identity with respect to the right-angle triangle. We use the formula of ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$. Putting the values, we get ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$. Then we use the angles of the triangles to denote the sides and express it in the form of trigonometric ratios. We get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Complete step by step answer:
The Pythagorean identity is about the trigonometric identity that is used n case of right-angle triangle.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.
We express it for $\Delta ABC$ where $\angle B=\dfrac{\pi }{2}$.
We have the expression for the triangle as ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$.
For $\Delta ABC$, $base=BC=b,height=AB=a,hypotenuse=AC=c$
Applying the rule, we get ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$.
We can also express it with respect to the angle $\angle BCA$. Let $\angle BCA=\theta $.
The equation ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$ can be simplified
$\begin{align}
& {{a}^{2}}+{{b}^{2}}={{c}^{2}} \\
& \Rightarrow {{\left( \dfrac{a}{c} \right)}^{2}}+{{\left( \dfrac{b}{c} \right)}^{2}}=1 \\
\end{align}$
With respect to the angle $\angle BCA=\theta $, we have $\dfrac{a}{c}=\sin \theta ,\dfrac{b}{c}=\cos \theta $.
Replacing the values, we get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
There are many reformed versions of the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Dividing with ${{\cos }^{2}}\theta $, we got \[{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \].
Dividing with ${{\sin }^{2}}\theta $, we got \[{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta \].
Note: The concept of Pythagorean identity is similar for both angles and sides. The representation of the triangle has to be for the right-angle triangle.
Complete step by step answer:
The Pythagorean identity is about the trigonometric identity that is used n case of right-angle triangle.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.
We express it for $\Delta ABC$ where $\angle B=\dfrac{\pi }{2}$.
We have the expression for the triangle as ${{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}={{\left( hypotenuse \right)}^{2}}$.
For $\Delta ABC$, $base=BC=b,height=AB=a,hypotenuse=AC=c$
Applying the rule, we get ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$.
We can also express it with respect to the angle $\angle BCA$. Let $\angle BCA=\theta $.
The equation ${{\left( a \right)}^{2}}+{{\left( b \right)}^{2}}={{\left( c \right)}^{2}}$ can be simplified
$\begin{align}
& {{a}^{2}}+{{b}^{2}}={{c}^{2}} \\
& \Rightarrow {{\left( \dfrac{a}{c} \right)}^{2}}+{{\left( \dfrac{b}{c} \right)}^{2}}=1 \\
\end{align}$
With respect to the angle $\angle BCA=\theta $, we have $\dfrac{a}{c}=\sin \theta ,\dfrac{b}{c}=\cos \theta $.
Replacing the values, we get ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
There are many reformed versions of the formula ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Dividing with ${{\cos }^{2}}\theta $, we got \[{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \].
Dividing with ${{\sin }^{2}}\theta $, we got \[{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta \].
Note: The concept of Pythagorean identity is similar for both angles and sides. The representation of the triangle has to be for the right-angle triangle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

