
What is the half-life of Uranium 234?
Answer
444.3k+ views
Hint: To solve this question, we first need to know what is half-life. The half-life of a substance is the time taken by it to decay or reduce to half of its original quantity. Half-life is used to describe exponential as well as non-exponential form of decay.
Complete answer:
When we talk about the decaying of a substance, it is usually the exponential decay of a substance. A substance is said to decay exponentially when it decays at a rate proportional to its current value.
The half-life of a substance that decays exponentially is constant throughout its lifetime.
Now, the relation between time and the amount of the substance can be given by the exponential decay equation.
Where the initial quantity of a substance is given by , the final quantity of the undecayed substance after time t is given by N(t), and the decay constant is given by .
The fraction of substance remaining when n half-lives have passed is given by .
Now, we let us take the time taken for the substance to decay in half to be .
So, when t = , .
When we substitute these values in the exponential decay equation, we get
Upon taking the log, we get
Now, the half-life of uranium-234 or has been calculated experimentally to be 246000 years.
Note:
It should be noted that the half-life of discrete entities like radioactive atoms describes the probability of the single unit of the entity decaying within its half-life time rather than the time taken to decay half of the single entity.
Complete answer:
When we talk about the decaying of a substance, it is usually the exponential decay of a substance. A substance is said to decay exponentially when it decays at a rate proportional to its current value.
The half-life of a substance that decays exponentially is constant throughout its lifetime.
Now, the relation between time and the amount of the substance can be given by the exponential decay equation.
Where the initial quantity of a substance is given by
The fraction of substance remaining when n half-lives have passed is given by
Now, we let us take the time taken for the substance to decay in half to be
So, when t =
When we substitute these values in the exponential decay equation, we get
Upon taking the log, we get
Now, the half-life of uranium-234 or
Note:
It should be noted that the half-life of discrete entities like radioactive atoms describes the probability of the single unit of the entity decaying within its half-life time rather than the time taken to decay half of the single entity.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
