
Water rises to a height h in a capillary at the surface of earth. On the surface of the moon the height of water column in the capillary will be:-
A. 6h
B. $\dfrac{1}{6}$h
C. h
D. zero
Answer
559.5k+ views
Hint: We will use the formula for rise in height of a capillary tube. Compare the value of ‘h’ at the surface of earth and at the surface of the moon. Consider all other values to be constant except that of acceleration due to gravity ‘g’. Then find the value of ‘h’ at the surface of earth.
Formula used:
\[\text{h=}\dfrac{\text{2Tcos }\!\!\theta\!\!\text{ }}{\text{ }\!\!\rho\!\!\text{ rg}}\]
Complete step by step solution:
It has been scientifically proven that the acceleration due to gravity at the surface of the moon is $\dfrac{1}{6}\text{th}$ of the gravity at the surface of the earth, that is, ${{g}_{m}}=\dfrac{1}{6}{{g}_{e}}$. …………….(1)
Here, ${{g}_{m}}$ represents the gravity at the surface of the moon and ${{g}_{e}}$represents the gravity on the surface of the earth.
Now, we will use the formula of $\text{h=}\dfrac{\text{2Tcos }\!\!\theta\!\!\text{ }}{\text{ }\!\!\rho\!\!\text{ rg}}$
Where,
h is the rise in height of liquid in the capillary tube ,
T is the surface tension of liquid, water in this case,
$\text{ }\!\!\theta\!\!\text{ }$ is the angle of contact,
$\text{ }\!\!\rho\!\!\text{ }$is the density of liquid (water),
r is the radius of tube and,
g is the acceleration due to gravity,
Now,
At the surface of the earth, ${{\text{h}}_{e}}\text{ }\!\!\alpha\!\!\text{ }\dfrac{\text{1}}{{{\text{g}}_{\text{e}}}}$ ………………(2)
At the surface of the moon, \[{{\text{h}}_{\text{m}}}\text{ }\!\!\alpha\!\!\text{ }\dfrac{\text{1}}{{{\text{g}}_{\text{m}}}}\] ………………(3)
Considering other values to be constant and dividing equation (2) by equation (3), we get
$\Rightarrow \dfrac{{{\text{h}}_{\text{e}}}}{{{\text{h}}_{\text{m}}}}\text{=}\dfrac{{{\text{g}}_{\text{m}}}}{{{\text{g}}_{\text{e}}}}$ …………..(4)
Now, we will use substitute equation (1) in equation (4), we get,
$\Rightarrow \dfrac{{{\text{h}}_{\text{e}}}}{{{\text{h}}_{\text{m}}}}\text{=}\dfrac{\text{1}}{\text{6}}$
$\therefore {{\text{h}}_{\text{m}}}\text{= 6}{{\text{h}}_{e}}$
Now, As per given in the question \[{{h}_{e}}=h\].
$\Rightarrow {{\text{h}}_{\text{m}}}\text{=6h}$
So, the correct answer is “Option A”.
Note: Remember the relation between acceleration due to gravity at surface of earth and moon that is \[{{\text{g}}_{\text{m}}}\text{=}\dfrac{\text{1}}{\text{6}}\text{g}{}_{\text{h}}\].There can be question where we are asked to find the rise of height in capillary tube on some other planet. Then the relation between acceleration due to gravity on that planet and earth will change and we must consider it accordingly.
Formula used:
\[\text{h=}\dfrac{\text{2Tcos }\!\!\theta\!\!\text{ }}{\text{ }\!\!\rho\!\!\text{ rg}}\]
Complete step by step solution:
It has been scientifically proven that the acceleration due to gravity at the surface of the moon is $\dfrac{1}{6}\text{th}$ of the gravity at the surface of the earth, that is, ${{g}_{m}}=\dfrac{1}{6}{{g}_{e}}$. …………….(1)
Here, ${{g}_{m}}$ represents the gravity at the surface of the moon and ${{g}_{e}}$represents the gravity on the surface of the earth.
Now, we will use the formula of $\text{h=}\dfrac{\text{2Tcos }\!\!\theta\!\!\text{ }}{\text{ }\!\!\rho\!\!\text{ rg}}$
Where,
h is the rise in height of liquid in the capillary tube ,
T is the surface tension of liquid, water in this case,
$\text{ }\!\!\theta\!\!\text{ }$ is the angle of contact,
$\text{ }\!\!\rho\!\!\text{ }$is the density of liquid (water),
r is the radius of tube and,
g is the acceleration due to gravity,
Now,
At the surface of the earth, ${{\text{h}}_{e}}\text{ }\!\!\alpha\!\!\text{ }\dfrac{\text{1}}{{{\text{g}}_{\text{e}}}}$ ………………(2)
At the surface of the moon, \[{{\text{h}}_{\text{m}}}\text{ }\!\!\alpha\!\!\text{ }\dfrac{\text{1}}{{{\text{g}}_{\text{m}}}}\] ………………(3)
Considering other values to be constant and dividing equation (2) by equation (3), we get
$\Rightarrow \dfrac{{{\text{h}}_{\text{e}}}}{{{\text{h}}_{\text{m}}}}\text{=}\dfrac{{{\text{g}}_{\text{m}}}}{{{\text{g}}_{\text{e}}}}$ …………..(4)
Now, we will use substitute equation (1) in equation (4), we get,
$\Rightarrow \dfrac{{{\text{h}}_{\text{e}}}}{{{\text{h}}_{\text{m}}}}\text{=}\dfrac{\text{1}}{\text{6}}$
$\therefore {{\text{h}}_{\text{m}}}\text{= 6}{{\text{h}}_{e}}$
Now, As per given in the question \[{{h}_{e}}=h\].
$\Rightarrow {{\text{h}}_{\text{m}}}\text{=6h}$
So, the correct answer is “Option A”.
Note: Remember the relation between acceleration due to gravity at surface of earth and moon that is \[{{\text{g}}_{\text{m}}}\text{=}\dfrac{\text{1}}{\text{6}}\text{g}{}_{\text{h}}\].There can be question where we are asked to find the rise of height in capillary tube on some other planet. Then the relation between acceleration due to gravity on that planet and earth will change and we must consider it accordingly.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

