Answer

Verified

441.9k+ views

Hint: Volume of hemisphere is given as $\dfrac{2}{3}\pi {{r}^{3}}$and total surface area can be given by $3\pi {{r}^{2}}$where r is the radius of the hemisphere and value of \[\pi \] be$\dfrac{22}{7}$.

Complete step-by-step answer:

As we know that volume of solid hemisphere can be given as $\dfrac{2}{3}\pi {{r}^{3}}$and total surface area can be given as$3\pi {{r}^{2}}$, where r is the radius of the hemisphere and value of \[\pi \] is$\dfrac{22}{7}$.

Now, it is given that both volume and total surface area are equal in magnitude. Hence, $\dfrac{2}{3}\pi {{r}^{3}}$and $3\pi {{r}^{2}}$are equal to each other.

Hence, we get

$\dfrac{2}{3}\pi {{r}^{3}}=\dfrac{3\pi {{r}^{2}}}{1}$

On cross-multiplying, we get$2\pi {{r}^{3}}=9\pi {{r}^{2}}$.

Now subtract $9\pi {{r}^{2}}$from both sides of the above equation, we get

$\begin{align}

& 2\pi {{r}^{3}}-9\pi {{r}^{2}}=9\pi {{r}^{2}}-9\pi {{r}^{2}} \\

& 2\pi {{r}^{3}}-9\pi {{r}^{2}}=0\ldots \ldots (1) \\

\end{align}$

Now, taking $\pi {{r}^{2}}$as common from both the terms i.e. $2\pi {{r}^{2}}$and $9\pi {{r}^{2}}$.

So, we get

$\pi {{r}^{2}}\left( 2r-9 \right)=0\ldots \ldots (2)$

as $\pi =\dfrac{22}{7}$, so it can never be zero.

Hence, the value of ${{r}^{2}}$or \[\left( 2r-9 \right)\] may be zero. So, we can equate ${{r}^{2}}$and \[\left( 2r-9 \right)\]to ‘0’ to get the value of r.

So, we get

${{r}^{2}}=0$

or $r=0$(Not possible)

A hemisphere of zero radius is not possible.

Hence r=0 can be ignored and not possible.

Now, equating \[\left( 2r-9 \right)\] to 0, we get

\[2r-9=0\]

Add 9 to both sides of above equation, we get

\[2r-9+9=0+9\]

or

$2r=9$

Now, dividing by 2 on both sides of the above equation, we get

$\dfrac{2r}{2}=\dfrac{9}{2}$

or

$r=\dfrac{9}{2}=4.5$

As we have given that volume is expressed in $c{{m}^{3}}$and area is expressed in$c{{m}^{2}}$. Hence, radius calculates should be in cm. Therefore, the radius of the hemisphere is 4.5cm.

Note: One can go wrong while writing the total surface area of the hemisphere. He/she may use $2\pi {{r}^{2}}$as total surface which is half of total surface which is half of total surface area of sphere i.e. $\dfrac{4\pi {{r}^{2}}}{2}=2\pi {{r}^{2}}$which us wrong as we are not including area of base. So, total surface area of hemisphere is $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.

One can get confused, how volume and surface area can be equal as both have different units i.e. $c{{m}^{3}}$and$c{{m}^{2}}$. So, one needs to take care with the statement that we are equating only magnitudes.

Complete step-by-step answer:

As we know that volume of solid hemisphere can be given as $\dfrac{2}{3}\pi {{r}^{3}}$and total surface area can be given as$3\pi {{r}^{2}}$, where r is the radius of the hemisphere and value of \[\pi \] is$\dfrac{22}{7}$.

Now, it is given that both volume and total surface area are equal in magnitude. Hence, $\dfrac{2}{3}\pi {{r}^{3}}$and $3\pi {{r}^{2}}$are equal to each other.

Hence, we get

$\dfrac{2}{3}\pi {{r}^{3}}=\dfrac{3\pi {{r}^{2}}}{1}$

On cross-multiplying, we get$2\pi {{r}^{3}}=9\pi {{r}^{2}}$.

Now subtract $9\pi {{r}^{2}}$from both sides of the above equation, we get

$\begin{align}

& 2\pi {{r}^{3}}-9\pi {{r}^{2}}=9\pi {{r}^{2}}-9\pi {{r}^{2}} \\

& 2\pi {{r}^{3}}-9\pi {{r}^{2}}=0\ldots \ldots (1) \\

\end{align}$

Now, taking $\pi {{r}^{2}}$as common from both the terms i.e. $2\pi {{r}^{2}}$and $9\pi {{r}^{2}}$.

So, we get

$\pi {{r}^{2}}\left( 2r-9 \right)=0\ldots \ldots (2)$

as $\pi =\dfrac{22}{7}$, so it can never be zero.

Hence, the value of ${{r}^{2}}$or \[\left( 2r-9 \right)\] may be zero. So, we can equate ${{r}^{2}}$and \[\left( 2r-9 \right)\]to ‘0’ to get the value of r.

So, we get

${{r}^{2}}=0$

or $r=0$(Not possible)

A hemisphere of zero radius is not possible.

Hence r=0 can be ignored and not possible.

Now, equating \[\left( 2r-9 \right)\] to 0, we get

\[2r-9=0\]

Add 9 to both sides of above equation, we get

\[2r-9+9=0+9\]

or

$2r=9$

Now, dividing by 2 on both sides of the above equation, we get

$\dfrac{2r}{2}=\dfrac{9}{2}$

or

$r=\dfrac{9}{2}=4.5$

As we have given that volume is expressed in $c{{m}^{3}}$and area is expressed in$c{{m}^{2}}$. Hence, radius calculates should be in cm. Therefore, the radius of the hemisphere is 4.5cm.

Note: One can go wrong while writing the total surface area of the hemisphere. He/she may use $2\pi {{r}^{2}}$as total surface which is half of total surface which is half of total surface area of sphere i.e. $\dfrac{4\pi {{r}^{2}}}{2}=2\pi {{r}^{2}}$which us wrong as we are not including area of base. So, total surface area of hemisphere is $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.

One can get confused, how volume and surface area can be equal as both have different units i.e. $c{{m}^{3}}$and$c{{m}^{2}}$. So, one needs to take care with the statement that we are equating only magnitudes.

Recently Updated Pages

Differentiate between Shortterm and Longterm adapt class 1 biology CBSE

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

Trending doubts

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

A Short Paragraph on our Country India

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

What is a collective noun for bees class 10 english CBSE