
Verify the following
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\cos {{30}^{0}}$
Answer
512.1k+ views
Hint: The Trigonometric ratios table helps to find the values of trigonometric standard angles such as ${{0}^{0}},{{30}^{0}},{{45}^{0}},{{60}^{0}}$ and ${{90}^{0}}$. It consists of trigonometric ratios – sine, cosine, tangent, cosecant, secant and cotangent. These ratios can be written in short as sin, cos, tan, cosec, sec and cot.
Complete step-by-step answer:
The value of the trigonometric ratios by using the trigonometric table is given below.
$\sin {{60}^{0}}=\dfrac{\sqrt{3}}{2},\sin {{30}^{0}}=\dfrac{1}{2},\cos {{60}^{0}}=\dfrac{1}{2},\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
Let us consider the left side of the given expression
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Multiplying the terms on the right side, we get
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{2\sqrt{3}}{4}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
From the trigonometric table, $\dfrac{\sqrt{3}}{2}=\cos {{30}^{0}}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\cos {{30}^{0}}$
Hence the given expression is verified
Note: Alternatively, the given question is verified by using a formula for the cosine of the difference of two angles, $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$. Let $A={{60}^{0}}$ and $B={{30}^{0}}$, then $\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\cos \left( {{60}^{0}}-{{30}^{0}} \right)=\cos {{30}^{0}}$.
Complete step-by-step answer:
The value of the trigonometric ratios by using the trigonometric table is given below.
$\sin {{60}^{0}}=\dfrac{\sqrt{3}}{2},\sin {{30}^{0}}=\dfrac{1}{2},\cos {{60}^{0}}=\dfrac{1}{2},\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
Let us consider the left side of the given expression
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Multiplying the terms on the right side, we get
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{2\sqrt{3}}{4}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
From the trigonometric table, $\dfrac{\sqrt{3}}{2}=\cos {{30}^{0}}$
$\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\cos {{30}^{0}}$
Hence the given expression is verified
Note: Alternatively, the given question is verified by using a formula for the cosine of the difference of two angles, $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$. Let $A={{60}^{0}}$ and $B={{30}^{0}}$, then $\cos {{60}^{0}}\cos {{30}^{0}}+\sin {{60}^{0}}\sin {{30}^{0}}=\cos \left( {{60}^{0}}-{{30}^{0}} \right)=\cos {{30}^{0}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE
