
Verify the following:
a) $18 \times [7+(-3)]=[18 \times 7]+[18 \times (-3)]$
b) $(-21) \times [(-4)+(-6)]=[(-21)\times (-4)]+[(-21) \times (-6)]$
Answer
484.2k+ views
Hint:
The property used in the question is the distributive property of multiplication. We will first solve the left hand side of the equation and then we will solve the right hand side of the equation such that the values of right hand side expression and left hand side expression are same or equal and thus the equation will get verified.
Complete step by step solution:
$18\times \left[ 7+\left( -3 \right) \right]=\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$
First we will solve the left hand side of the given equation.
Left hand side expression is $18\times \left[ 7+\left( -3 \right) \right]$ or
$LHS=18\times \left[ 7+\left( -3 \right) \right]$
First we will add the terms inside the bracket.
$LHS=18\times \left( 4 \right)$
Multiplying the18 with 4, we get
$LHS=72$
Now, we will solve the right hand side of the given equation.
Left hand side expression is $\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$ or
$RHS=\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$
First we will multiply the terms inside the brackets.
$RHS=126+\left( -54 \right)$
Opening the bracket, we get
$RHS=126-54$
Subtracting 54 from 126, we get
$RHS=72$
We can see that the value of $LHS$ and $RHS$ are equal i.e.
$LHS=RHS=72$
Hence, verified.
$\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]=\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$
First we will solve the left hand side of the given equation.
Left hand side expression is $\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]$ or
$LHS=\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]$
First we will add the terms inside the bracket.
$LHS=\left( -21 \right)\times \left( -10 \right)$
Multiplying the-21 with -10, we get
$LHS=210$
Now, we will solve the right hand side of the given equation.
Left hand side expression is $\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$ or
$RHS=\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$
First we will multiply the terms inside the brackets.
$RHS=84+126$
On adding 84 and 126, we get
$RHS=210$
We can see that the value of $LHS$ and $RHS$ are equal i.e.
$LHS=RHS=210$
Hence, verified.
Note:
Here distributive property of multiplication has been used here i.e. in this question we have verified distributive property of multiplication. Distributive property of multiplication states that if $a$, $b$ and $c$ are three real numbers then according to this property, $a\left( b+c \right)=a.b+a.c$.
The property used in the question is the distributive property of multiplication. We will first solve the left hand side of the equation and then we will solve the right hand side of the equation such that the values of right hand side expression and left hand side expression are same or equal and thus the equation will get verified.
Complete step by step solution:
$18\times \left[ 7+\left( -3 \right) \right]=\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$
First we will solve the left hand side of the given equation.
Left hand side expression is $18\times \left[ 7+\left( -3 \right) \right]$ or
$LHS=18\times \left[ 7+\left( -3 \right) \right]$
First we will add the terms inside the bracket.
$LHS=18\times \left( 4 \right)$
Multiplying the18 with 4, we get
$LHS=72$
Now, we will solve the right hand side of the given equation.
Left hand side expression is $\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$ or
$RHS=\left[ 18\times 7 \right]+\left[ 18\times \left( -3 \right) \right]$
First we will multiply the terms inside the brackets.
$RHS=126+\left( -54 \right)$
Opening the bracket, we get
$RHS=126-54$
Subtracting 54 from 126, we get
$RHS=72$
We can see that the value of $LHS$ and $RHS$ are equal i.e.
$LHS=RHS=72$
Hence, verified.
$\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]=\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$
First we will solve the left hand side of the given equation.
Left hand side expression is $\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]$ or
$LHS=\left( -21 \right)\times \left[ \left( -4 \right)+\left( -6 \right) \right]$
First we will add the terms inside the bracket.
$LHS=\left( -21 \right)\times \left( -10 \right)$
Multiplying the-21 with -10, we get
$LHS=210$
Now, we will solve the right hand side of the given equation.
Left hand side expression is $\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$ or
$RHS=\left[ \left( -21 \right)\times \left( -4 \right) \right]+\left[ \left( -21 \right)\times \left( -6 \right) \right]$
First we will multiply the terms inside the brackets.
$RHS=84+126$
On adding 84 and 126, we get
$RHS=210$
We can see that the value of $LHS$ and $RHS$ are equal i.e.
$LHS=RHS=210$
Hence, verified.
Note:
Here distributive property of multiplication has been used here i.e. in this question we have verified distributive property of multiplication. Distributive property of multiplication states that if $a$, $b$ and $c$ are three real numbers then according to this property, $a\left( b+c \right)=a.b+a.c$.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
How many millions make a billion class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Number of Prime between 1 to 100 is class 6 maths CBSE

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

Name the countries which are larger than India class 6 social science CBSE

Why is democracy considered as the best form of go class 6 social science CBSE
