
How do you verify that parallelogram ABCD with vertices A$( - 5, - 1)$,B$( - 9,6)$,C$( - 1,5)$ and D$(3, - 2)$ is a rhombus by showing that it is a parallelogram with a perpendicular diagonal?
Answer
556.5k+ views
Hint: First we know the slope of a parallelogram. To find the slope of a parallelogram. To find the slope of ${m_{AB}},{m_{CD}},{m_{BC}},{m_{AD}}$. The formula is,
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
If \[AB\parallel CD,{\text{ }}BC\parallel AD\]. It is a parallelogram.
And then we find the midpoint of AC and BD.
If AC and BD are midpoints, then it’s a rhombus.
Complete step-by-step solution:
The given information is that parallelogram ABCD with vertices A$( - 5, - 1)$,B$( - 9,6)$,C$( - 1,5)$ and D$(3, - 2)$.
If \[AB\parallel CD,{\text{ }}BC\parallel AD\]. It is a parallelogram.
If the slope of \[ABCD,{\text{ }}BCAD\] then it is a parallelogram
Now the slope of parallelogram formula is,
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Let AB vertices $( - 5, - 1)$ and $( - 9,6)$, now find the slope of AB
$\Rightarrow$${m_{AB}} = \dfrac{{6 + 1}}{{ - 9 + 5}}$
Add numerator and subtract the denominator,
$\Rightarrow$${m_{AB}} = - \dfrac{7}{4}$
Let CD vertices $( - 1,5)$and $(3, - 2)$, now find the slope of CD
$\Rightarrow$${m_{CD}} = \dfrac{{ - 2 - 5}}{{3 + 1}}$
Add numerator and the denominator
$\Rightarrow$${m_{CD}} = - \dfrac{7}{4}$
Let BC vertices $( - 9,6)$and $( - 1,5)$, now find the slope of BC
$\Rightarrow$${m_{BC}} = \dfrac{{5 - 6}}{{ - 1 + 9}}$
Subtract numerator and denominator
$\Rightarrow$${m_{BC}} = - \dfrac{1}{8}$
Let AD vertices $( - 5, - 1)$and $(3, - 2)$, now find the slope of AD
$\Rightarrow$${m_{AD}} = \dfrac{{ - 2 + 1}}{{3 + 5}}$
Subtract numerator and add the denominator
$\Rightarrow$${m_{AD}} = - \dfrac{1}{8}$
Hence \[AB\parallel CD,{\text{ }}BC\parallel AD\] and ABCD is parallelogram.
$\Rightarrow$Slope of AC ${m_{AC}} = \dfrac{{5 + 1}}{{ - 1 + 5}} = \dfrac{6}{4} = \dfrac{3}{2}$
$\Rightarrow$Slope of BD ${m_{BD}} = \dfrac{{6 + 2}}{{ - 9 - 3}} = \dfrac{8}{{ - 12}} = - \dfrac{2}{3}$
$\Rightarrow$${m_{AC}} = - \dfrac{1}{{{m_{BD}}}}$
Hence diagonals intersect each other at right angles.
It can be a square or a rhombus or a kite.
It’s not a square since AB is not perpendicular AD.
It can be a rhombus.
If the intersection point of the diagonals is their midpoint, then it’s a rhombus, else it’s a kite.
Let’s find the midpoint $(E)$ of AC and BD to prove it’s a rhombus.
$E = \dfrac{{A( - 5, - 1) + C( - 1,5)}}{2} = ( - 3,2)$
Also $E = \dfrac{{B( - 9,6) + D(3, - 2)}}{2} = ( - 3,2)$
Hence it’s a rhombus.
Note: Properties of a rhombus:
Opposite sides are parallel.
In a parallelogram, the opposite are equal.
Let, $ABCD$ is a parallelogram
Therefore, $AB = CD$ and $AD = BC$
Opposite angles are equal.
In a parallelogram, the opposite angles are equal.
Let, ABCD is a parallelogram
Therefore, $\angle A = \angle C$ and $\angle B = \angle D$
Diagonals bisect each other at right angles.
In a parallelogram, the diagonal bisects each other.
$AC$ and $BD$ are the diagonals of $ABCD$ bisecting each other at point $E$
$AE = EC$ and $EB = ED$
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
If \[AB\parallel CD,{\text{ }}BC\parallel AD\]. It is a parallelogram.
And then we find the midpoint of AC and BD.
If AC and BD are midpoints, then it’s a rhombus.
Complete step-by-step solution:
The given information is that parallelogram ABCD with vertices A$( - 5, - 1)$,B$( - 9,6)$,C$( - 1,5)$ and D$(3, - 2)$.
If \[AB\parallel CD,{\text{ }}BC\parallel AD\]. It is a parallelogram.
If the slope of \[ABCD,{\text{ }}BCAD\] then it is a parallelogram
Now the slope of parallelogram formula is,
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Let AB vertices $( - 5, - 1)$ and $( - 9,6)$, now find the slope of AB
$\Rightarrow$${m_{AB}} = \dfrac{{6 + 1}}{{ - 9 + 5}}$
Add numerator and subtract the denominator,
$\Rightarrow$${m_{AB}} = - \dfrac{7}{4}$
Let CD vertices $( - 1,5)$and $(3, - 2)$, now find the slope of CD
$\Rightarrow$${m_{CD}} = \dfrac{{ - 2 - 5}}{{3 + 1}}$
Add numerator and the denominator
$\Rightarrow$${m_{CD}} = - \dfrac{7}{4}$
Let BC vertices $( - 9,6)$and $( - 1,5)$, now find the slope of BC
$\Rightarrow$${m_{BC}} = \dfrac{{5 - 6}}{{ - 1 + 9}}$
Subtract numerator and denominator
$\Rightarrow$${m_{BC}} = - \dfrac{1}{8}$
Let AD vertices $( - 5, - 1)$and $(3, - 2)$, now find the slope of AD
$\Rightarrow$${m_{AD}} = \dfrac{{ - 2 + 1}}{{3 + 5}}$
Subtract numerator and add the denominator
$\Rightarrow$${m_{AD}} = - \dfrac{1}{8}$
Hence \[AB\parallel CD,{\text{ }}BC\parallel AD\] and ABCD is parallelogram.
$\Rightarrow$Slope of AC ${m_{AC}} = \dfrac{{5 + 1}}{{ - 1 + 5}} = \dfrac{6}{4} = \dfrac{3}{2}$
$\Rightarrow$Slope of BD ${m_{BD}} = \dfrac{{6 + 2}}{{ - 9 - 3}} = \dfrac{8}{{ - 12}} = - \dfrac{2}{3}$
$\Rightarrow$${m_{AC}} = - \dfrac{1}{{{m_{BD}}}}$
Hence diagonals intersect each other at right angles.
It can be a square or a rhombus or a kite.
It’s not a square since AB is not perpendicular AD.
It can be a rhombus.
If the intersection point of the diagonals is their midpoint, then it’s a rhombus, else it’s a kite.
Let’s find the midpoint $(E)$ of AC and BD to prove it’s a rhombus.
$E = \dfrac{{A( - 5, - 1) + C( - 1,5)}}{2} = ( - 3,2)$
Also $E = \dfrac{{B( - 9,6) + D(3, - 2)}}{2} = ( - 3,2)$
Hence it’s a rhombus.
Note: Properties of a rhombus:
Opposite sides are parallel.
In a parallelogram, the opposite are equal.
Let, $ABCD$ is a parallelogram
Therefore, $AB = CD$ and $AD = BC$
Opposite angles are equal.
In a parallelogram, the opposite angles are equal.
Let, ABCD is a parallelogram
Therefore, $\angle A = \angle C$ and $\angle B = \angle D$
Diagonals bisect each other at right angles.
In a parallelogram, the diagonal bisects each other.
$AC$ and $BD$ are the diagonals of $ABCD$ bisecting each other at point $E$
$AE = EC$ and $EB = ED$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

