
Verify that median divides a triangle into two triangles of equal areas for $ \Delta ABC $ whose vertices are $ A\left( 4,-6 \right) $ , $ B\left( 3,-2 \right) $ , $ C\left( 5,2 \right) $ .
Answer
516.9k+ views
Hint: We first take the vertices of $ \Delta ABC $ and try to find the median AD where D is the midpoint of BC. Then we take the midpoint theorem of \[\left( \dfrac{a+c}{2},\dfrac{b+d}{2} \right)\] for finding D. after that we find the area of the divided triangles to find the equality.
Complete step by step solution:
We have $ \Delta ABC $ whose vertices are
$ A\left( 4,-6 \right) $ , $ B\left( 3,-2 \right) $ , $ C\left( 5,2 \right) $ .
We know that for given coordinates of vertices of
$ \left( a,b \right);\left( c,d \right);\left( e,f \right) $ , the area of the triangle made out of those vertices will be
$ \dfrac{1}{2}\left| a\left( d-f \right)+c\left( f-b \right)+e\left( b-d \right) \right| $ square unit.
We assume that for $ \Delta ABC $ , the median is AD where D is the midpoint of BC.
We know that for given coordinates of vertices of $ \left( a,b \right);\left( c,d \right) $ , the midpoint will be \[\left( \dfrac{a+c}{2},\dfrac{b+d}{2} \right)\].
We find the coordinates of D. So, following the mid-point theorem for $ B\left( 3,-2 \right) $ , $ C\left( 5,2 \right) $ , we get
\[D\equiv \left( \dfrac{3+5}{2},\dfrac{-2+2}{2} \right)\equiv \left( 4,0 \right)\].
Now we find the areas for $ \Delta ABD $ and $ \Delta ACD $ .
For $ \Delta ABD $ , the vertices are $ A\left( 4,-6 \right) $ , $ B\left( 3,-2 \right) $ , $ D\left( 4,0 \right) $ .
Therefore, the area is $ \dfrac{1}{2}\left| 4\left( -2 \right)+3\left( 0+6 \right)+4\left( -6+2 \right) \right|=\dfrac{6}{2}=3 $ square units.
For $ \Delta ACD $ , the vertices are $ A\left( 4,-6 \right) $ , $ C\left( 5,2 \right) $ , $ D\left( 4,0 \right) $ .
Therefore, the area is $ \dfrac{1}{2}\left| 4\left( 2 \right)+5\left( 0+6 \right)+4\left( -6-2 \right) \right|=\dfrac{6}{2}=3 $ square units.
We can see that \[ar\left( \Delta ABD \right)=ar\left( \Delta ACD \right)=3\].
Thus, Verified that the median divides a triangle into two triangles of equal areas.
Note: Instead of taking AD, we could also have taken the medians like BE and CF. The final claim of getting triangles of equal areas remains the same for all medians.
Complete step by step solution:
We have $ \Delta ABC $ whose vertices are
$ A\left( 4,-6 \right) $ , $ B\left( 3,-2 \right) $ , $ C\left( 5,2 \right) $ .
We know that for given coordinates of vertices of
$ \left( a,b \right);\left( c,d \right);\left( e,f \right) $ , the area of the triangle made out of those vertices will be
$ \dfrac{1}{2}\left| a\left( d-f \right)+c\left( f-b \right)+e\left( b-d \right) \right| $ square unit.
We assume that for $ \Delta ABC $ , the median is AD where D is the midpoint of BC.
We know that for given coordinates of vertices of $ \left( a,b \right);\left( c,d \right) $ , the midpoint will be \[\left( \dfrac{a+c}{2},\dfrac{b+d}{2} \right)\].
We find the coordinates of D. So, following the mid-point theorem for $ B\left( 3,-2 \right) $ , $ C\left( 5,2 \right) $ , we get
\[D\equiv \left( \dfrac{3+5}{2},\dfrac{-2+2}{2} \right)\equiv \left( 4,0 \right)\].
Now we find the areas for $ \Delta ABD $ and $ \Delta ACD $ .
For $ \Delta ABD $ , the vertices are $ A\left( 4,-6 \right) $ , $ B\left( 3,-2 \right) $ , $ D\left( 4,0 \right) $ .
Therefore, the area is $ \dfrac{1}{2}\left| 4\left( -2 \right)+3\left( 0+6 \right)+4\left( -6+2 \right) \right|=\dfrac{6}{2}=3 $ square units.
For $ \Delta ACD $ , the vertices are $ A\left( 4,-6 \right) $ , $ C\left( 5,2 \right) $ , $ D\left( 4,0 \right) $ .
Therefore, the area is $ \dfrac{1}{2}\left| 4\left( 2 \right)+5\left( 0+6 \right)+4\left( -6-2 \right) \right|=\dfrac{6}{2}=3 $ square units.
We can see that \[ar\left( \Delta ABD \right)=ar\left( \Delta ACD \right)=3\].
Thus, Verified that the median divides a triangle into two triangles of equal areas.
Note: Instead of taking AD, we could also have taken the medians like BE and CF. The final claim of getting triangles of equal areas remains the same for all medians.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

