
Verify Rolle’s Theorem for the function
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
In the interval [a, b] where, $0\notin \left[ a,b \right]$
Answer
612.3k+ views
Hint: Use the basic properties of logarithm and simplify f (x). Differentiate it to get ${{f}^{'}}\left( x \right)$ put ${{f}^{'}}\left( c \right)=0,x=c\Rightarrow {{f}^{'}}\left( x \right)$ and find the relation connect a, b, and c.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

