
Verify Rolle’s Theorem for the function
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
In the interval [a, b] where, $0\notin \left[ a,b \right]$
Answer
597.3k+ views
Hint: Use the basic properties of logarithm and simplify f (x). Differentiate it to get ${{f}^{'}}\left( x \right)$ put ${{f}^{'}}\left( c \right)=0,x=c\Rightarrow {{f}^{'}}\left( x \right)$ and find the relation connect a, b, and c.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

