
Verify Rolle’s Theorem for the function
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
In the interval [a, b] where, $0\notin \left[ a,b \right]$
Answer
515.4k+ views
Hint: Use the basic properties of logarithm and simplify f (x). Differentiate it to get ${{f}^{'}}\left( x \right)$ put ${{f}^{'}}\left( c \right)=0,x=c\Rightarrow {{f}^{'}}\left( x \right)$ and find the relation connect a, b, and c.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
$f\left( x \right)=\log \left\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\}$
We know the basic logarithmic identities that,
$\begin{align}
& \log \left( \dfrac{a}{b} \right)=\log a-\log b \\
& \log \left( ab \right)=\log a+\log b \\
\end{align}$
Now apply all these identities in f (x)
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\
& =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\
& =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\
\end{align}$
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
$\begin{align}
& f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
& {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\
& \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\
\end{align}$
Since $x\in \left[ a,b \right]\Rightarrow x\ne 0$
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
$\begin{align}
& f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\
& f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\
\end{align}$
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that ${{f}^{'}}\left( c \right)=0$. Now put x = c in equation (iii)
$\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0$
Now let us simplify the above expression.
$\begin{align}
& \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\
& \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\
& 2{{c}^{2}}-{{c}^{2}}-ab=0 \\
& \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\
\end{align}$
Out of these two values $c=\sqrt{ab}$ , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]
Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that ${{f}^{'}}\left( c \right)=0$ Remember this point in Rolle’s Theorem.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
