
How do you verify $\cos (x-y)-\cos (x+y)=2\sin x\sin y$ ?
Answer
540.3k+ views
Hint: First analyse the left hand side of the equation and check whether it is equal to the right hand side of the equation. This can be done by using the suitable trigonometric identities (formulae) and simplify any one side of the equation.
Complete step by step solution:
Sine, cosine and tangent of an angle are trigonometric ratios. These ratios are also called trigonometric functions. When we plot a graph of the trigonometric ratios with respect to all the real values of an angle, we get a graph that has a periodic property. This means that the graph repeats itself after equal intervals of the angle.Other than the trigonometric ratios sine, cosine and tangent we have other trigonometric ratios called cosecant, secant and cotangent.
All the above six trigonometric ratios (functions) are dependent on each other. There are different properties and identities that relate the trigonometric ratios. The equation that has to be verified is,
$\cos (x-y)-\cos (x+y)=2\sin x\sin y$
Let us first analyse the left hand side of the equation and check whether it is equal to the right hand side of the equation.The left hand side of the equation is,
$\cos (x-y)-\cos (x+y)$ ….. (i)
To simplify this expression we shall use the identity $\cos (x-y)=\cos x\cos y+\sin x\sin y$
And also the identity $\cos (x+y)=\cos x\cos y-\sin x\sin y$
Substitute these values in (i).
$\cos (x-y)-\cos (x+y)=\cos x\cos y+\sin x\sin y-(\cos x\cos y-\sin x\sin y)$
On simplifying further we get that
$\cos (x-y)-\cos (x+y)=\cos x\cos y+\sin x\sin y-\cos x\cos y+\sin x\sin y)$
$\therefore\cos (x-y)-\cos (x+y)=2\sin x\sin y$
Therefore, the left hand side of the given equation is equal to the right hand side of the equation. Hence, the equation is verified and is correct.
Note:It is not compulsory to verify a given equation only by simplifying the left hand side of the equation. You can also simply the right hand side and check whether it results as the same as the left hand side. Or you can also simplify both sides of the equation and check whether they gave the same result.
Complete step by step solution:
Sine, cosine and tangent of an angle are trigonometric ratios. These ratios are also called trigonometric functions. When we plot a graph of the trigonometric ratios with respect to all the real values of an angle, we get a graph that has a periodic property. This means that the graph repeats itself after equal intervals of the angle.Other than the trigonometric ratios sine, cosine and tangent we have other trigonometric ratios called cosecant, secant and cotangent.
All the above six trigonometric ratios (functions) are dependent on each other. There are different properties and identities that relate the trigonometric ratios. The equation that has to be verified is,
$\cos (x-y)-\cos (x+y)=2\sin x\sin y$
Let us first analyse the left hand side of the equation and check whether it is equal to the right hand side of the equation.The left hand side of the equation is,
$\cos (x-y)-\cos (x+y)$ ….. (i)
To simplify this expression we shall use the identity $\cos (x-y)=\cos x\cos y+\sin x\sin y$
And also the identity $\cos (x+y)=\cos x\cos y-\sin x\sin y$
Substitute these values in (i).
$\cos (x-y)-\cos (x+y)=\cos x\cos y+\sin x\sin y-(\cos x\cos y-\sin x\sin y)$
On simplifying further we get that
$\cos (x-y)-\cos (x+y)=\cos x\cos y+\sin x\sin y-\cos x\cos y+\sin x\sin y)$
$\therefore\cos (x-y)-\cos (x+y)=2\sin x\sin y$
Therefore, the left hand side of the given equation is equal to the right hand side of the equation. Hence, the equation is verified and is correct.
Note:It is not compulsory to verify a given equation only by simplifying the left hand side of the equation. You can also simply the right hand side and check whether it results as the same as the left hand side. Or you can also simplify both sides of the equation and check whether they gave the same result.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

