
Values of x for which the sixth term of the expansion of $E = {\left( {{3^{{{\log }_3}\sqrt {9|x - 2|} }} + {7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right)^7}$ is 567, are
(). 1
(). 2
(). 3
(). None of these
Answer
575.4k+ views
Hint: The given binomial expansion is of the form ${(a + b)^7}$, hence the r+1, term of the binomial expansion is given by- \[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\]. Put r = 5, in this equation to find the 6th term.
Complete step-by-step answer:
We have been given in the question the binomial expansion, $E = {\left( {{3^{{{\log }_3}\sqrt {9|x - 2|} }} + {7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right)^7}$.
Also, the 6th term of the expansion is 567.
Therefore, using the hint, the value of the 6th term of the expansion can be found out by using the formula,
\[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\]
Now we have to find 6th term, so keep r = 5, n = 7, $a = {3^{{{\log }_3}\sqrt {9|x - 2|} }}$, $b = {7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}$ in the given equation.
We get-
\[
{T_{5 + 1}} = {}^7{C_5}{\left[ {{3^{{{\log }_3}\sqrt {9|x - 2|} }}} \right]^{7 - 5}}{\left[ {{7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right]^5} \\
{T_6} = {T_{5 + 1}} = {}^7{C_5}{\left[ {{3^{{{\log }_3}\sqrt {9|x - 2|} }}} \right]^2}{\left[ {{7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right]^5} \\
\Rightarrow {T_6} = \dfrac{{7!}}{{5!.2!}}{\left[ {\sqrt {{9^{|x - 2|}}} } \right]^2}{\left[ {{7^{{{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}^{\dfrac{1}{5}}} \right]^5} \\
= 21{\left[ {\sqrt {{9^{|x - 2|}}} } \right]^2}\left[ {\left[ {(4){{.3}^{|x - 2|}} - 9} \right]} \right] \\
= {21.9^{|x - 2|}}.\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} \\
= {21.3^{2|x - 2|}}.\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} \\
\]
Now, we have been given that the 6th term is 567. Therefore keeping, ${T_6} = 567$, we get-
\[
{T_6} = {21.3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 567 \\
\Rightarrow {21.3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 21 \times 27 \\
\Rightarrow {3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 27 \\
\Rightarrow {4.3^{3|x - 2|}} - (9){3^{2|x - 2|}} = 27 \\
\]
Put $u = {3^{|x - 2|}}$, we get-
$4{u^3} - 9{u^2} - 27 = 0$
Now, we can see u = 3 satisfies the equation, so we can write-
$
{3^{|x - 2|}} = 3 \\
\Rightarrow |x - 2| = 1 \\
\Rightarrow x - 2 = \pm 1 \\
\Rightarrow x = 2 \pm 1 \\
\Rightarrow x = 3,1 \\
$
Therefore, we have two values of x for which the 6th term of the expansion is 567.
Hence, the correct options are [A] and [C].
Note: Whenever solving such types of questions, always write down the information provided in the question, and then use the standard formula of binomial expansion, as mentioned in the solution, i.e., \[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\], to find the 6th term of the given expansion, and then equate it to 567 to find the values of x.
Complete step-by-step answer:
We have been given in the question the binomial expansion, $E = {\left( {{3^{{{\log }_3}\sqrt {9|x - 2|} }} + {7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right)^7}$.
Also, the 6th term of the expansion is 567.
Therefore, using the hint, the value of the 6th term of the expansion can be found out by using the formula,
\[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\]
Now we have to find 6th term, so keep r = 5, n = 7, $a = {3^{{{\log }_3}\sqrt {9|x - 2|} }}$, $b = {7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}$ in the given equation.
We get-
\[
{T_{5 + 1}} = {}^7{C_5}{\left[ {{3^{{{\log }_3}\sqrt {9|x - 2|} }}} \right]^{7 - 5}}{\left[ {{7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right]^5} \\
{T_6} = {T_{5 + 1}} = {}^7{C_5}{\left[ {{3^{{{\log }_3}\sqrt {9|x - 2|} }}} \right]^2}{\left[ {{7^{\left( {\dfrac{1}{5}} \right){{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}} \right]^5} \\
\Rightarrow {T_6} = \dfrac{{7!}}{{5!.2!}}{\left[ {\sqrt {{9^{|x - 2|}}} } \right]^2}{\left[ {{7^{{{\log }_7}\left[ {(4){{.3}^{|x - 2|}} - 9} \right]}}^{\dfrac{1}{5}}} \right]^5} \\
= 21{\left[ {\sqrt {{9^{|x - 2|}}} } \right]^2}\left[ {\left[ {(4){{.3}^{|x - 2|}} - 9} \right]} \right] \\
= {21.9^{|x - 2|}}.\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} \\
= {21.3^{2|x - 2|}}.\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} \\
\]
Now, we have been given that the 6th term is 567. Therefore keeping, ${T_6} = 567$, we get-
\[
{T_6} = {21.3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 567 \\
\Rightarrow {21.3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 21 \times 27 \\
\Rightarrow {3^{2|x - 2|}}\left\{ {{{4.3}^{|x - 2|}} - 9} \right\} = 27 \\
\Rightarrow {4.3^{3|x - 2|}} - (9){3^{2|x - 2|}} = 27 \\
\]
Put $u = {3^{|x - 2|}}$, we get-
$4{u^3} - 9{u^2} - 27 = 0$
Now, we can see u = 3 satisfies the equation, so we can write-
$
{3^{|x - 2|}} = 3 \\
\Rightarrow |x - 2| = 1 \\
\Rightarrow x - 2 = \pm 1 \\
\Rightarrow x = 2 \pm 1 \\
\Rightarrow x = 3,1 \\
$
Therefore, we have two values of x for which the 6th term of the expansion is 567.
Hence, the correct options are [A] and [C].
Note: Whenever solving such types of questions, always write down the information provided in the question, and then use the standard formula of binomial expansion, as mentioned in the solution, i.e., \[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\], to find the 6th term of the given expansion, and then equate it to 567 to find the values of x.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

