
What is the value of the expression given below?
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}}\]
(a) $\dfrac{{n(n + 1)}}{2}$
(b) \[\dfrac{{{n^2}}}{4}\]
(c) $\dfrac{2}{{n(n + 1)}}$
(d) $n + 1$
Answer
502.2k+ views
Hint: We are going to find the desired value for this problem by using the basic concept of permutation and combinations, factorials, etc. and then simplifying it to a number of iterations that is up to the nth terms of the equations.
Complete step-by-step answer:
$\because $The given expression for the combinations of the equations can be written as,\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}}\]
Predominantly the given equation can also be extracted as (in a generalised manner), the equation becomes
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{n}{1} + 2\dfrac{{n(n - 1)}}{{2!}} \times \dfrac{1}{n} + 3\dfrac{{n(n - 1)(n - 2)}}{{3!}} \times \dfrac{1}{{\dfrac{{n(n - 1)}}{{2!}}}} + \ldots \ldots \ldots + \dfrac{{n \times 1}}{n}\]As a result, solving the equation mathematically, we get
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = n + (n - 1) + (n - 2) + \ldots \ldots \ldots + 1\]
As a result, the infinite equation can be written as
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = 1 + 2 + 3 + \ldots \ldots \ldots + n\]
Now, hence the generalised solution of the equation is formed as
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{{n(n + 1)}}{2}\]
Therefore, the required answer is $\dfrac{{n(n + 1)}}{2}$respectively.
$\therefore \Rightarrow $The correct option is (a)
So, the correct answer is “Option a”.
Note: While solving the solution one must remember the fundamental terminology regarding the algebraic (general) terms where they have been used here in the respective solution. For an instance, the existing solution depends on the formula \[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{n}{1} + 2\dfrac{{n(n - 1)}}{{2!}} \times \dfrac{1}{n} + 3\dfrac{{n(n - 1)(n - 2)}}{{3!}} \times \dfrac{1}{{\dfrac{{n(n - 1)}}{{2!}}}} + \ldots \ldots \ldots + \dfrac{{n \times 1}}{n}\] itself, which in term are one of the generalised formulae of combinational statement or equation. Clarifying the fundamental formulae one must remember the rules of permutation and combination concept (such as $0! = 1$,\[{}^n{c_n} = 1\],\[{}^n{c_1} = n\]) which is useful for the ease of the problem.
Complete step-by-step answer:
$\because $The given expression for the combinations of the equations can be written as,\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}}\]
Predominantly the given equation can also be extracted as (in a generalised manner), the equation becomes
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{n}{1} + 2\dfrac{{n(n - 1)}}{{2!}} \times \dfrac{1}{n} + 3\dfrac{{n(n - 1)(n - 2)}}{{3!}} \times \dfrac{1}{{\dfrac{{n(n - 1)}}{{2!}}}} + \ldots \ldots \ldots + \dfrac{{n \times 1}}{n}\]As a result, solving the equation mathematically, we get
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = n + (n - 1) + (n - 2) + \ldots \ldots \ldots + 1\]
As a result, the infinite equation can be written as
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = 1 + 2 + 3 + \ldots \ldots \ldots + n\]
Now, hence the generalised solution of the equation is formed as
\[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{{n(n + 1)}}{2}\]
Therefore, the required answer is $\dfrac{{n(n + 1)}}{2}$respectively.
$\therefore \Rightarrow $The correct option is (a)
So, the correct answer is “Option a”.
Note: While solving the solution one must remember the fundamental terminology regarding the algebraic (general) terms where they have been used here in the respective solution. For an instance, the existing solution depends on the formula \[\dfrac{{{C_1}}}{{{C_0}}} + 2\dfrac{{{C_2}}}{{{C_1}}} + 3\dfrac{{{C_3}}}{{{C_2}}} + \ldots \ldots \ldots + n\dfrac{{{C_n}}}{{{C_{n - 1}}}} = \dfrac{n}{1} + 2\dfrac{{n(n - 1)}}{{2!}} \times \dfrac{1}{n} + 3\dfrac{{n(n - 1)(n - 2)}}{{3!}} \times \dfrac{1}{{\dfrac{{n(n - 1)}}{{2!}}}} + \ldots \ldots \ldots + \dfrac{{n \times 1}}{n}\] itself, which in term are one of the generalised formulae of combinational statement or equation. Clarifying the fundamental formulae one must remember the rules of permutation and combination concept (such as $0! = 1$,\[{}^n{c_n} = 1\],\[{}^n{c_1} = n\]) which is useful for the ease of the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

