Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What will the value of $0.4267E10 \div 0.2437{\text{E - 02}}$ is?
$
  (a){\text{ 0}}{\text{.1751E03}} \\
  (b){\text{ 0}}{\text{.1752E13}} \\
  (c){\text{ 0}}{\text{.1751E13}} \\
  (d){\text{ 0}}{\text{.1762E13}} \\
$

Answer
VerifiedVerified
616.8k+ views
Hint:  In this question us E stands for exponential, so use the property that $pEq = p \times {10^q}$, to simplify the given expression. Simply perform division between the given numerator and denominator part.

Complete step-by-step answer:
Given equation is
$0.4267E10 \div 0.2437E - 02$
Now as we know in the above equation E stands for exponential (i.e. $9Ex = 9 \times {10^x}$
and$9E - x = 9 \times {10^{ - x}}$) so use this property in above equation we have,
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = \dfrac{{0.4267 \times {{10}^{10}}}}{{0.2437
\times {{10}^{ - 2}}}}$
Now simplify this equation we have,
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = \dfrac{{0.4267}}{{0.2437}} \times {10^{10 + 2}}$
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = 1.75092 \times {10^{12}}$
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = 1.751 \times {10^{12}}$
Now multiply and divide by 10 we have,
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = \dfrac{{1.751}}{{10}} \times {10^{12}} \times
10$
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = 0.1751 \times {10^{13}}$
So this is also written as
$ \Rightarrow 0.4267E10 \div 0.2437E - 02 = 0.1751E13$
So this is the required answer.
Hence option (C) is correct.

Note: The most common way to write the values in scientific notation is with the X10 Exponent structure. We need to get confused between Euler’s number e and this E as both are different. “Euler’s number” or “e” is the base of the natural logarithm.