
Using vectors, find the area of triangle ABC, whose vertices are $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$ and $C\left( 4,5,-1 \right)$.
Answer
588.9k+ views
Hint: First we draw a diagram of triangle ABC. Let \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\] represents the side vectors so, the area of triangle is given by \[\dfrac{1}{2}\times \left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\] . We use the cross product of vectors to calculate the value of \[\left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\]. To find the length of \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\], we use the distance formula as coordinates of vertices are given in the question.
Complete step-by-step solution:
We have been given that the vertices of $\Delta ABC$ are $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$ and $C\left( 4,5,-1 \right)$.
We have to find the area of the triangle.
Let us first draw a diagram of $\Delta ABC$ with vertices $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$ and $C\left( 4,5,-1 \right)$.
In $\Delta ABC$ let \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\] represents the side vectors, so the area of triangle $\Delta ABC$ will be \[\dfrac{1}{2}\times \left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\]
Now, first we have to calculate the length of \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\].
Now, we have $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$, so the length of \[\overset{\to }{\mathop{AB}}\,=B-A\]
Thus, we have
\[\begin{align}
& \overset{\to }{\mathop{AB}}\,=\left( 2-1 \right)\overset{\wedge }{\mathop{i}}\,+\left( -1-2 \right)\overset{\wedge }{\mathop{j}}\,+\left( 4-3 \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{AB}}\,=\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, we have \[A\left( 1,2,3 \right)\] and $C\left( 4,5,-1 \right)$, so the length of \[\overset{\to }{\mathop{AC}}\,=C-A\]
Thus, we have
\[\begin{align}
& \overset{\to }{\mathop{AC}}\,=\left( 4-1 \right)\overset{\wedge }{\mathop{i}}\,+\left( 5-2 \right)\overset{\wedge }{\mathop{j}}\,+\left( -1-3 \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{AC}}\,=\overset{\wedge }{\mathop{3i}}\,+3\overset{\wedge }{\mathop{j}}\,-4\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, we have to find the cross product of \[\left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\]
So, we have \[\overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=\left( \overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)\times \left( 3\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{j}}\,-4\overset{\wedge }{\mathop{k}}\, \right)\]
Now, we know that
\[\begin{align}
& \overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{i}}\,=0,\overset{\wedge }{\mathop{j}}\,\times \overset{\wedge }{\mathop{j}}\,=0,\overset{\wedge }{\mathop{k}}\,\times \overset{\wedge }{\mathop{k}}\,=0, \\
& \overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,,\overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{k}}\,=-\overset{\wedge }{\mathop{j}}\,,\overset{\wedge }{\mathop{j}}\,\times \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{i}}\, \\
\end{align}\]
Now, solving further we get
\[\overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=\left( 12-3 \right)\overset{\wedge }{\mathop{i}}\,-\left( -4-3 \right)\overset{\wedge }{\mathop{j}}\,+\left( 3+9 \right)\overset{\wedge }{\mathop{k}}\,\]
\[\Rightarrow \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=9\overset{\wedge }{\mathop{i}}\,+7\overset{\wedge }{\mathop{j}}\,+12\overset{\wedge }{\mathop{k}}\,\]
Now the value of \[\left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\] will be $\sqrt{{{9}^{2}}+{{7}^{2}}+{{12}^{2}}}=\sqrt{274}$
So, the area of triangle will be \[\dfrac{1}{2}\times \left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|=\dfrac{1}{2}\times \sqrt{274}\]
$\Rightarrow \dfrac{\sqrt{274}}{2}sq.units$
So, the area of triangle $\Delta ABC$ is $\dfrac{\sqrt{274}}{2}sq.units$.
Note: The area of triangle cannot be negative so we take modulus while applying the formula. The possibility of mistake is while calculating the lengths of \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\]. As we use vectors so the value of \[\overset{\to }{\mathop{AB}}\,=B-A\] is the correct way to calculate, so do not take as \[\overset{\to }{\mathop{AB}}\,=A-B\], it gives the incorrect answer.
Complete step-by-step solution:
We have been given that the vertices of $\Delta ABC$ are $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$ and $C\left( 4,5,-1 \right)$.
We have to find the area of the triangle.
Let us first draw a diagram of $\Delta ABC$ with vertices $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$ and $C\left( 4,5,-1 \right)$.
In $\Delta ABC$ let \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\] represents the side vectors, so the area of triangle $\Delta ABC$ will be \[\dfrac{1}{2}\times \left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\]
Now, first we have to calculate the length of \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\].
Now, we have $A\left( 1,2,3 \right),B\left( 2,-1,4 \right)$, so the length of \[\overset{\to }{\mathop{AB}}\,=B-A\]
Thus, we have
\[\begin{align}
& \overset{\to }{\mathop{AB}}\,=\left( 2-1 \right)\overset{\wedge }{\mathop{i}}\,+\left( -1-2 \right)\overset{\wedge }{\mathop{j}}\,+\left( 4-3 \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{AB}}\,=\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, we have \[A\left( 1,2,3 \right)\] and $C\left( 4,5,-1 \right)$, so the length of \[\overset{\to }{\mathop{AC}}\,=C-A\]
Thus, we have
\[\begin{align}
& \overset{\to }{\mathop{AC}}\,=\left( 4-1 \right)\overset{\wedge }{\mathop{i}}\,+\left( 5-2 \right)\overset{\wedge }{\mathop{j}}\,+\left( -1-3 \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{AC}}\,=\overset{\wedge }{\mathop{3i}}\,+3\overset{\wedge }{\mathop{j}}\,-4\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, we have to find the cross product of \[\left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\]
So, we have \[\overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=\left( \overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)\times \left( 3\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{j}}\,-4\overset{\wedge }{\mathop{k}}\, \right)\]
Now, we know that
\[\begin{align}
& \overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{i}}\,=0,\overset{\wedge }{\mathop{j}}\,\times \overset{\wedge }{\mathop{j}}\,=0,\overset{\wedge }{\mathop{k}}\,\times \overset{\wedge }{\mathop{k}}\,=0, \\
& \overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,,\overset{\wedge }{\mathop{i}}\,\times \overset{\wedge }{\mathop{k}}\,=-\overset{\wedge }{\mathop{j}}\,,\overset{\wedge }{\mathop{j}}\,\times \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{i}}\, \\
\end{align}\]
Now, solving further we get
\[\overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=\left( 12-3 \right)\overset{\wedge }{\mathop{i}}\,-\left( -4-3 \right)\overset{\wedge }{\mathop{j}}\,+\left( 3+9 \right)\overset{\wedge }{\mathop{k}}\,\]
\[\Rightarrow \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\,=9\overset{\wedge }{\mathop{i}}\,+7\overset{\wedge }{\mathop{j}}\,+12\overset{\wedge }{\mathop{k}}\,\]
Now the value of \[\left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|\] will be $\sqrt{{{9}^{2}}+{{7}^{2}}+{{12}^{2}}}=\sqrt{274}$
So, the area of triangle will be \[\dfrac{1}{2}\times \left| \overset{\to }{\mathop{AB}}\,\times \overset{\to }{\mathop{AC}}\, \right|=\dfrac{1}{2}\times \sqrt{274}\]
$\Rightarrow \dfrac{\sqrt{274}}{2}sq.units$
So, the area of triangle $\Delta ABC$ is $\dfrac{\sqrt{274}}{2}sq.units$.
Note: The area of triangle cannot be negative so we take modulus while applying the formula. The possibility of mistake is while calculating the lengths of \[\overset{\to }{\mathop{AB}}\,\] and \[\overset{\to }{\mathop{AC}}\,\]. As we use vectors so the value of \[\overset{\to }{\mathop{AB}}\,=B-A\] is the correct way to calculate, so do not take as \[\overset{\to }{\mathop{AB}}\,=A-B\], it gives the incorrect answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

