
Using trapezoidal rule, by dividing the interval [0, 4] into 4 equal parts, the approximate value of \[\int\limits_{0}^{4}{{{x}^{2}}+1}\] is equal to
(a) 25
(b) 26
(c) 27
(d) 28
Answer
606.3k+ views
Hint: Divide the interval into 4 parts thus find the sub interval of width \[\Delta x\], Now use the trapezoidal rule formula for 4 equal parts. Substitute x = 0, 1, 2, 3, 4 in f (x) get the values and substitute in the formula.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

