
Using the vector method, find the incentre of the triangle whose vertices are P(0,4,0), Q (0,0,3) and R(0,4,3).
Answer
600k+ views
Hint: At first change the coordinates into vectors, then use $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$ to find $\overrightarrow{PQ},\overrightarrow{QR},\overrightarrow{RS}$ also find their absolute values. After getting use the formula of incentre which is,
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{PQ} \right|.\overrightarrow{R}+\left| \overrightarrow{QR} \right|.\overrightarrow{P}+\left| \overrightarrow{RP} \right|.\overrightarrow{Q}}{\left| \overrightarrow{PQ} \right|+\left| \overrightarrow{QR} \right|+\left| \overrightarrow{RP} \right|}$
Complete step by step answer:
At first we will represent P in a vector form, so P will be equal to $\left( 0\widehat{i}+4\widehat{j}+0\widehat{k} \right)$ which can be written as $4\widehat{j}$ .
So, $\overrightarrow{P}=4\widehat{j}$.
Now we will represent Q in a vector form, so Q will be equal to $\left( 0\widehat{i}+0\widehat{j}+3\widehat{k} \right)$ which can be written as $3\widehat{k}$.
So, $\overrightarrow{Q}=3\widehat{k}$.
Now we will represent R in a vector form, so R will be equal to $\left( 0\widehat{i}+4\widehat{j}+3\widehat{k} \right)$ which can be written as $4\widehat{j}+3\widehat{k}.$
So, $\overrightarrow{R}=4\widehat{j}+3\widehat{k}$
Now we will find vectors $\overrightarrow{PQ},\overrightarrow{QR},\overrightarrow{RP}$ using formula, if $\overrightarrow{A}$ and $\overrightarrow{B}$ are vectors then $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$so,
$\overrightarrow{PQ}=\overrightarrow{Q}-\overrightarrow{P}=3\widehat{k}-4\widehat{j}$
$\overrightarrow{QR}=\overrightarrow{R}-\overrightarrow{Q}=\left( 4\widehat{j}+3\widehat{k} \right)-3\widehat{k}=4\widehat{j}$
$\overrightarrow{RP}=\overrightarrow{P}-\overrightarrow{R}=4\widehat{j}-\left( 4\widehat{j}+3\widehat{k} \right)=-3\widehat{k}$
Now we can find the absolute value of vector using formula, if $A=x\widehat{i}+y\widehat{j}+2\widehat{k}$, then $\left| A \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Then,
$\left| \overrightarrow{PQ} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( -4 \right)}^{2}}+{{\left( 3 \right)}^{2}}}=\sqrt{16+9}=5$
$\left| \overrightarrow{QR} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 4 \right)}^{2}}+{{\left( 0 \right)}^{2}}}=\sqrt{16}=4$
$\left| \overrightarrow{RP} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 0 \right)}^{2}}+{{\left( -3 \right)}^{2}}}=\sqrt{9}=3$
Now we will find the incentre by using the fact that the point is the intersection of three angle bisectors. We will use the formula,
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{BC} \right|.\overrightarrow{A}+\left| \overrightarrow{CA} \right|.\overrightarrow{B}+\left| \overrightarrow{AB} \right|.\overrightarrow{C}}{\left| \overrightarrow{BC} \right|+\left| \overrightarrow{CA} \right|+\left| \overrightarrow{AB} \right|}$
Now we will put vectors $\overrightarrow{P,}\overrightarrow{Q},\overrightarrow{R}$ in the above formula so we can write it as,
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{QR} \right|.\overrightarrow{P}+\left| \overrightarrow{RP} \right|.\overrightarrow{Q}+\left| \overrightarrow{PQ} \right|.\overrightarrow{R}}{\left| \overrightarrow{QR} \right|+\left| \overrightarrow{RP} \right|+\left| \overrightarrow{PQ} \right|}$
Now substituting the values we get,
$\overrightarrow{I}=\dfrac{4\left( 4\widehat{j} \right)+3\left( 3\widehat{k} \right)+5\left( 3\widehat{k}+4\widehat{j} \right)}{4+3+5}$
This can be simplified as,
\[\overrightarrow{I}=\dfrac{16\widehat{j}+9\widehat{k}+20\widehat{j}+15\widehat{k}}{12}\]
Hence,
$\overrightarrow{I}=\dfrac{36\widehat{j}+24\widehat{k}}{12}$
So,
$\overrightarrow{I}=3\widehat{j}+2\widehat{k}$
Hence the $\overrightarrow{I}$ can be represented in coordinates as (0, 3, 2).
So, the coordinates of the triangle of the triangle is (0, 3, 2).
Note: Students should know the formula of how to represent the coordinates as a vector, finding the absolute value of a vector before doing these kinds of problems. They should also be careful about the calculation errors while dealing with vectors.
Students generally make an incentive formula. They may confuse it with the centroid of the triangle.
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{PQ} \right|.\overrightarrow{R}+\left| \overrightarrow{QR} \right|.\overrightarrow{P}+\left| \overrightarrow{RP} \right|.\overrightarrow{Q}}{\left| \overrightarrow{PQ} \right|+\left| \overrightarrow{QR} \right|+\left| \overrightarrow{RP} \right|}$
Complete step by step answer:
At first we will represent P in a vector form, so P will be equal to $\left( 0\widehat{i}+4\widehat{j}+0\widehat{k} \right)$ which can be written as $4\widehat{j}$ .
So, $\overrightarrow{P}=4\widehat{j}$.
Now we will represent Q in a vector form, so Q will be equal to $\left( 0\widehat{i}+0\widehat{j}+3\widehat{k} \right)$ which can be written as $3\widehat{k}$.
So, $\overrightarrow{Q}=3\widehat{k}$.
Now we will represent R in a vector form, so R will be equal to $\left( 0\widehat{i}+4\widehat{j}+3\widehat{k} \right)$ which can be written as $4\widehat{j}+3\widehat{k}.$
So, $\overrightarrow{R}=4\widehat{j}+3\widehat{k}$
Now we will find vectors $\overrightarrow{PQ},\overrightarrow{QR},\overrightarrow{RP}$ using formula, if $\overrightarrow{A}$ and $\overrightarrow{B}$ are vectors then $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$so,
$\overrightarrow{PQ}=\overrightarrow{Q}-\overrightarrow{P}=3\widehat{k}-4\widehat{j}$
$\overrightarrow{QR}=\overrightarrow{R}-\overrightarrow{Q}=\left( 4\widehat{j}+3\widehat{k} \right)-3\widehat{k}=4\widehat{j}$
$\overrightarrow{RP}=\overrightarrow{P}-\overrightarrow{R}=4\widehat{j}-\left( 4\widehat{j}+3\widehat{k} \right)=-3\widehat{k}$
Now we can find the absolute value of vector using formula, if $A=x\widehat{i}+y\widehat{j}+2\widehat{k}$, then $\left| A \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Then,
$\left| \overrightarrow{PQ} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( -4 \right)}^{2}}+{{\left( 3 \right)}^{2}}}=\sqrt{16+9}=5$
$\left| \overrightarrow{QR} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 4 \right)}^{2}}+{{\left( 0 \right)}^{2}}}=\sqrt{16}=4$
$\left| \overrightarrow{RP} \right|=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 0 \right)}^{2}}+{{\left( -3 \right)}^{2}}}=\sqrt{9}=3$
Now we will find the incentre by using the fact that the point is the intersection of three angle bisectors. We will use the formula,
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{BC} \right|.\overrightarrow{A}+\left| \overrightarrow{CA} \right|.\overrightarrow{B}+\left| \overrightarrow{AB} \right|.\overrightarrow{C}}{\left| \overrightarrow{BC} \right|+\left| \overrightarrow{CA} \right|+\left| \overrightarrow{AB} \right|}$
Now we will put vectors $\overrightarrow{P,}\overrightarrow{Q},\overrightarrow{R}$ in the above formula so we can write it as,
$\overrightarrow{I}=\dfrac{\left| \overrightarrow{QR} \right|.\overrightarrow{P}+\left| \overrightarrow{RP} \right|.\overrightarrow{Q}+\left| \overrightarrow{PQ} \right|.\overrightarrow{R}}{\left| \overrightarrow{QR} \right|+\left| \overrightarrow{RP} \right|+\left| \overrightarrow{PQ} \right|}$
Now substituting the values we get,
$\overrightarrow{I}=\dfrac{4\left( 4\widehat{j} \right)+3\left( 3\widehat{k} \right)+5\left( 3\widehat{k}+4\widehat{j} \right)}{4+3+5}$
This can be simplified as,
\[\overrightarrow{I}=\dfrac{16\widehat{j}+9\widehat{k}+20\widehat{j}+15\widehat{k}}{12}\]
Hence,
$\overrightarrow{I}=\dfrac{36\widehat{j}+24\widehat{k}}{12}$
So,
$\overrightarrow{I}=3\widehat{j}+2\widehat{k}$
Hence the $\overrightarrow{I}$ can be represented in coordinates as (0, 3, 2).
So, the coordinates of the triangle of the triangle is (0, 3, 2).
Note: Students should know the formula of how to represent the coordinates as a vector, finding the absolute value of a vector before doing these kinds of problems. They should also be careful about the calculation errors while dealing with vectors.
Students generally make an incentive formula. They may confuse it with the centroid of the triangle.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

