
Using the formula \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\] find the value of $\sin {15^ \circ }$
A) \[\sqrt 3 \]
B) $\sqrt 3 + 1$
C) $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
D) $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Answer
579k+ views
Hint: Generally we know the values of $\sin $, $\cos $and $\tan $ of ${0^ \circ }$, ${30^ \circ }$, ${45^ \circ }$, ${60^ \circ }$ and ${90^ \circ }$. To obtain the values in between then use the formula of $\sin (A - B)$, $\sin (A + B)$, $\cos (A - B)$ and $\cos (A + B)$. Here we have to find the value of ${15^ \circ }$ and we know that ${15^ \circ } = {45^ \circ } - {30^ \circ } = {60^ \circ } - {45^ \circ }$, so use any one combination and use given formula \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\]. Put the standard values, simplify the equation to obtain the value of $\sin {15^ \circ }$.
Complete step-by-step answer:
In this case we have to find the value of $\sin {15^ \circ }$.
Generally we know the values of $\sin $, $\cos $and $\tan $ of ${0^ \circ }$, ${30^ \circ }$, ${45^ \circ }$, ${60^ \circ }$ and ${90^ \circ }$. To obtain the values in between then use the formula for $\sin (A - B)$, $\sin (A + B)$, $\cos (A - B)$ ad $\cos (A + B)$.
As we know that ${15^ \circ } = {45^ \circ } - {30^ \circ } = {60^ \circ } - {45^ \circ }$, so use any one combination to obtain value of $\sin {15^ \circ }$.
Let’s take ${15^ \circ } = {60^ \circ } - {45^ \circ }$. However you can take ${15^ \circ } = {45^ \circ } - {30^ \circ }$ and solve the equation similarly as solved below. You will get the same answer.
Here, we can say that the value of A and B as $A = {60^ \circ }$ and $B = {45^ \circ }$.
Using the formula of sin of difference of angle, \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\]
Put value of $A = {60^ \circ }$ and $B = {45^ \circ }$ in above equation,
So, \[\sin ({60^ \circ } - {45^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\],
So, \[\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\].
As we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {60^ \circ } = \dfrac{1}{2}$,
So putting the values in \[\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\] equation,
\[\sin ({15^ \circ }) = \dfrac{{\sqrt 3 }}{2} \cdot \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \cdot \dfrac{1}{{\sqrt 2 }}\]
Taking $\dfrac{1}{{\sqrt 2 }}$ term common in right of the equation,
So, \[\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})\]
Simplifying, \[\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 - 1}}{2})\]
So, \[\sin ({15^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
So the value of $\sin {15^ \circ }$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
So, Option (C) is the correct answer.
Note: In similar type questions we can find the value of $\sin {75^ \circ }$, $\cos {15^ \circ }$, $\cos {75^ \circ }$ and so on. As ${75^ \circ } = {30^ \circ } + {45^ \circ }$ we can use similar type formula to obtain value of $\sin {75^ \circ }$ or $\cos {75^ \circ }$. There are some equations for solving such type of questions, like \[\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B\], \[\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B\] and \[\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B\].
Complete step-by-step answer:
In this case we have to find the value of $\sin {15^ \circ }$.
Generally we know the values of $\sin $, $\cos $and $\tan $ of ${0^ \circ }$, ${30^ \circ }$, ${45^ \circ }$, ${60^ \circ }$ and ${90^ \circ }$. To obtain the values in between then use the formula for $\sin (A - B)$, $\sin (A + B)$, $\cos (A - B)$ ad $\cos (A + B)$.
As we know that ${15^ \circ } = {45^ \circ } - {30^ \circ } = {60^ \circ } - {45^ \circ }$, so use any one combination to obtain value of $\sin {15^ \circ }$.
Let’s take ${15^ \circ } = {60^ \circ } - {45^ \circ }$. However you can take ${15^ \circ } = {45^ \circ } - {30^ \circ }$ and solve the equation similarly as solved below. You will get the same answer.
Here, we can say that the value of A and B as $A = {60^ \circ }$ and $B = {45^ \circ }$.
Using the formula of sin of difference of angle, \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\]
Put value of $A = {60^ \circ }$ and $B = {45^ \circ }$ in above equation,
So, \[\sin ({60^ \circ } - {45^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\],
So, \[\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\].
As we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {60^ \circ } = \dfrac{1}{2}$,
So putting the values in \[\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }\] equation,
\[\sin ({15^ \circ }) = \dfrac{{\sqrt 3 }}{2} \cdot \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \cdot \dfrac{1}{{\sqrt 2 }}\]
Taking $\dfrac{1}{{\sqrt 2 }}$ term common in right of the equation,
So, \[\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})\]
Simplifying, \[\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 - 1}}{2})\]
So, \[\sin ({15^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
So the value of $\sin {15^ \circ }$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
So, Option (C) is the correct answer.
Note: In similar type questions we can find the value of $\sin {75^ \circ }$, $\cos {15^ \circ }$, $\cos {75^ \circ }$ and so on. As ${75^ \circ } = {30^ \circ } + {45^ \circ }$ we can use similar type formula to obtain value of $\sin {75^ \circ }$ or $\cos {75^ \circ }$. There are some equations for solving such type of questions, like \[\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B\], \[\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B\] and \[\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

