
Using suitable identities, expand the following:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
(c) ${{\left( 4a-56 \right)}^{2}}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
(e) ${{\left( -3a+5b+4c \right)}^{2}}$
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
Answer
513.3k+ views
Hint: To expand (a) and (c), use the identity $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$. To expand (b), use the identity $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$. To expand (d), use the identity $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. To expand (e) and (f), use the identity $''{{\left( a+b+c \right)}^{3}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca''$.
Complete step-by-step answer:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
We have to expand this expression using a suitable identity.
Identity that can be used: $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$
Here $a=\dfrac{x}{5}$ and $b=3y$ .
Putting $a=\dfrac{x}{5}\,and\,b=3y$ in the above identity, we will get.
$\begin{align}
& {{\left( \dfrac{x}{5}-3y \right)}^{2}}={{\left( \dfrac{x}{5} \right)}^{2}}-2\left( \dfrac{x}{5} \right)\left( 3y \right)+{{\left( 3y \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{5}-3y \right)}^{2}}=\dfrac{{{x}^{2}}}{25}-\dfrac{6xy}{5}+9{{y}^{2}} \\
\end{align}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$.
Here a=11x and b=0.2y
On putting a=11x and b=0.2y in the above identity, we will get: -
${{\left( 11x+0.2y \right)}^{2}}={{\left( 11x \right)}^{2}}+2\left( 11x \right)\left( 0.2y \right)+{{\left( 0.2y \right)}^{2}}$
$\Rightarrow {{\left( 11x+0.2y \right)}^{2}}=121{{x}^{2}}+4.4xy+0.04{{y}^{2}}$
(c)${{\left( 4a-56 \right)}^{2}}$
To expand the algebraic expression, the identity that can be used is: $''{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}''$ on putting x=4a and y=5b, we will get-
$\begin{align}
& {{\left( 4a-5b \right)}^{2}}={{\left( 4a \right)}^{2}}-2\left( 4a \right)\left( 5b \right)+{{\left( 5b \right)}^{2}} \\
& \Rightarrow {{\left( 4a-5b \right)}^{2}}=16{{a}^{2}}-40ab+25{{b}^{2}} \\
\end{align}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. On putting a=y and b= $\dfrac{2x}{5}$ in the above identity, we will ge$\begin{align}
& \\
& {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{2x}{5} \right)}^{3}}-3y\left( \dfrac{2x}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
& \Rightarrow {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{8x}{125} \right)}^{3}}-\left( \dfrac{6xy}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
\end{align}$
(e)${{\left( -3a+5b+4c \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$ . on putting x=-34, y=5b and z=4c in above identity, we will get-
\[\begin{align}
& {{\left( -3a+5b+4c \right)}^{3}}={{\left( -3a \right)}^{2}}+{{\left( 5b \right)}^{2}}+{{\left( 4c \right)}^{2}}+2\left( -3a \right)\left( 5b \right)+2\left( 5b \right)\left( 4c \right)+2\left( -3a \right)\left( 4c \right) \\
& \Rightarrow {{\left( -3a+5b+4c \right)}^{3}}=9{{a}^{2}}+25{{b}^{2}}+16{{c}^{2}}-30ab+40bc-24ac \\
\end{align}\]\[\]
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
To expand the above algebraic expression, the identity that can be used is $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$. On putting x= $\dfrac{a}{2}$, y=-b and z= $\dfrac{-c}{3}$, we get-
\[\begin{align}
& {{\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)}^{3}}={{\left( \dfrac{1}{2}a \right)}^{2}}+{{\left( -b \right)}^{2}}+{{\left( -\dfrac{1}{3}c \right)}^{2}}+2\left( \dfrac{1}{2}a \right)\left( -b \right)+2\left( -b \right)\left( -\dfrac{c}{3} \right)+2\left( \dfrac{a}{2} \right)\left( -\dfrac{c}{3} \right) \\
& \Rightarrow \left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)=\dfrac{{{a}^{2}}}{4}+{{b}^{2}}+\dfrac{{{c}^{2}}}{9}-ab+\dfrac{2bc}{3}-\dfrac{ac}{3} \\
\end{align}\]
Note: While using the identities do not get confused in the sign. Students generally get confused and make sign mistakes which leads to wrong answers. Such confusion should be avoided and the identities must be memorized correctly.
Complete step-by-step answer:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
We have to expand this expression using a suitable identity.
Identity that can be used: $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$
Here $a=\dfrac{x}{5}$ and $b=3y$ .
Putting $a=\dfrac{x}{5}\,and\,b=3y$ in the above identity, we will get.
$\begin{align}
& {{\left( \dfrac{x}{5}-3y \right)}^{2}}={{\left( \dfrac{x}{5} \right)}^{2}}-2\left( \dfrac{x}{5} \right)\left( 3y \right)+{{\left( 3y \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{5}-3y \right)}^{2}}=\dfrac{{{x}^{2}}}{25}-\dfrac{6xy}{5}+9{{y}^{2}} \\
\end{align}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$.
Here a=11x and b=0.2y
On putting a=11x and b=0.2y in the above identity, we will get: -
${{\left( 11x+0.2y \right)}^{2}}={{\left( 11x \right)}^{2}}+2\left( 11x \right)\left( 0.2y \right)+{{\left( 0.2y \right)}^{2}}$
$\Rightarrow {{\left( 11x+0.2y \right)}^{2}}=121{{x}^{2}}+4.4xy+0.04{{y}^{2}}$
(c)${{\left( 4a-56 \right)}^{2}}$
To expand the algebraic expression, the identity that can be used is: $''{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}''$ on putting x=4a and y=5b, we will get-
$\begin{align}
& {{\left( 4a-5b \right)}^{2}}={{\left( 4a \right)}^{2}}-2\left( 4a \right)\left( 5b \right)+{{\left( 5b \right)}^{2}} \\
& \Rightarrow {{\left( 4a-5b \right)}^{2}}=16{{a}^{2}}-40ab+25{{b}^{2}} \\
\end{align}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. On putting a=y and b= $\dfrac{2x}{5}$ in the above identity, we will ge$\begin{align}
& \\
& {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{2x}{5} \right)}^{3}}-3y\left( \dfrac{2x}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
& \Rightarrow {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{8x}{125} \right)}^{3}}-\left( \dfrac{6xy}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
\end{align}$
(e)${{\left( -3a+5b+4c \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$ . on putting x=-34, y=5b and z=4c in above identity, we will get-
\[\begin{align}
& {{\left( -3a+5b+4c \right)}^{3}}={{\left( -3a \right)}^{2}}+{{\left( 5b \right)}^{2}}+{{\left( 4c \right)}^{2}}+2\left( -3a \right)\left( 5b \right)+2\left( 5b \right)\left( 4c \right)+2\left( -3a \right)\left( 4c \right) \\
& \Rightarrow {{\left( -3a+5b+4c \right)}^{3}}=9{{a}^{2}}+25{{b}^{2}}+16{{c}^{2}}-30ab+40bc-24ac \\
\end{align}\]\[\]
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
To expand the above algebraic expression, the identity that can be used is $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$. On putting x= $\dfrac{a}{2}$, y=-b and z= $\dfrac{-c}{3}$, we get-
\[\begin{align}
& {{\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)}^{3}}={{\left( \dfrac{1}{2}a \right)}^{2}}+{{\left( -b \right)}^{2}}+{{\left( -\dfrac{1}{3}c \right)}^{2}}+2\left( \dfrac{1}{2}a \right)\left( -b \right)+2\left( -b \right)\left( -\dfrac{c}{3} \right)+2\left( \dfrac{a}{2} \right)\left( -\dfrac{c}{3} \right) \\
& \Rightarrow \left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)=\dfrac{{{a}^{2}}}{4}+{{b}^{2}}+\dfrac{{{c}^{2}}}{9}-ab+\dfrac{2bc}{3}-\dfrac{ac}{3} \\
\end{align}\]
Note: While using the identities do not get confused in the sign. Students generally get confused and make sign mistakes which leads to wrong answers. Such confusion should be avoided and the identities must be memorized correctly.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
