
Using suitable identities, expand the following:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
(c) ${{\left( 4a-56 \right)}^{2}}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
(e) ${{\left( -3a+5b+4c \right)}^{2}}$
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
Answer
611.1k+ views
Hint: To expand (a) and (c), use the identity $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$. To expand (b), use the identity $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$. To expand (d), use the identity $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. To expand (e) and (f), use the identity $''{{\left( a+b+c \right)}^{3}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca''$.
Complete step-by-step answer:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
We have to expand this expression using a suitable identity.
Identity that can be used: $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$
Here $a=\dfrac{x}{5}$ and $b=3y$ .
Putting $a=\dfrac{x}{5}\,and\,b=3y$ in the above identity, we will get.
$\begin{align}
& {{\left( \dfrac{x}{5}-3y \right)}^{2}}={{\left( \dfrac{x}{5} \right)}^{2}}-2\left( \dfrac{x}{5} \right)\left( 3y \right)+{{\left( 3y \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{5}-3y \right)}^{2}}=\dfrac{{{x}^{2}}}{25}-\dfrac{6xy}{5}+9{{y}^{2}} \\
\end{align}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$.
Here a=11x and b=0.2y
On putting a=11x and b=0.2y in the above identity, we will get: -
${{\left( 11x+0.2y \right)}^{2}}={{\left( 11x \right)}^{2}}+2\left( 11x \right)\left( 0.2y \right)+{{\left( 0.2y \right)}^{2}}$
$\Rightarrow {{\left( 11x+0.2y \right)}^{2}}=121{{x}^{2}}+4.4xy+0.04{{y}^{2}}$
(c)${{\left( 4a-56 \right)}^{2}}$
To expand the algebraic expression, the identity that can be used is: $''{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}''$ on putting x=4a and y=5b, we will get-
$\begin{align}
& {{\left( 4a-5b \right)}^{2}}={{\left( 4a \right)}^{2}}-2\left( 4a \right)\left( 5b \right)+{{\left( 5b \right)}^{2}} \\
& \Rightarrow {{\left( 4a-5b \right)}^{2}}=16{{a}^{2}}-40ab+25{{b}^{2}} \\
\end{align}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. On putting a=y and b= $\dfrac{2x}{5}$ in the above identity, we will ge$\begin{align}
& \\
& {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{2x}{5} \right)}^{3}}-3y\left( \dfrac{2x}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
& \Rightarrow {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{8x}{125} \right)}^{3}}-\left( \dfrac{6xy}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
\end{align}$
(e)${{\left( -3a+5b+4c \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$ . on putting x=-34, y=5b and z=4c in above identity, we will get-
\[\begin{align}
& {{\left( -3a+5b+4c \right)}^{3}}={{\left( -3a \right)}^{2}}+{{\left( 5b \right)}^{2}}+{{\left( 4c \right)}^{2}}+2\left( -3a \right)\left( 5b \right)+2\left( 5b \right)\left( 4c \right)+2\left( -3a \right)\left( 4c \right) \\
& \Rightarrow {{\left( -3a+5b+4c \right)}^{3}}=9{{a}^{2}}+25{{b}^{2}}+16{{c}^{2}}-30ab+40bc-24ac \\
\end{align}\]\[\]
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
To expand the above algebraic expression, the identity that can be used is $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$. On putting x= $\dfrac{a}{2}$, y=-b and z= $\dfrac{-c}{3}$, we get-
\[\begin{align}
& {{\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)}^{3}}={{\left( \dfrac{1}{2}a \right)}^{2}}+{{\left( -b \right)}^{2}}+{{\left( -\dfrac{1}{3}c \right)}^{2}}+2\left( \dfrac{1}{2}a \right)\left( -b \right)+2\left( -b \right)\left( -\dfrac{c}{3} \right)+2\left( \dfrac{a}{2} \right)\left( -\dfrac{c}{3} \right) \\
& \Rightarrow \left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)=\dfrac{{{a}^{2}}}{4}+{{b}^{2}}+\dfrac{{{c}^{2}}}{9}-ab+\dfrac{2bc}{3}-\dfrac{ac}{3} \\
\end{align}\]
Note: While using the identities do not get confused in the sign. Students generally get confused and make sign mistakes which leads to wrong answers. Such confusion should be avoided and the identities must be memorized correctly.
Complete step-by-step answer:
(a) ${{\left( \dfrac{x}{5}-3y \right)}^{2}}$
We have to expand this expression using a suitable identity.
Identity that can be used: $''{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}''$
Here $a=\dfrac{x}{5}$ and $b=3y$ .
Putting $a=\dfrac{x}{5}\,and\,b=3y$ in the above identity, we will get.
$\begin{align}
& {{\left( \dfrac{x}{5}-3y \right)}^{2}}={{\left( \dfrac{x}{5} \right)}^{2}}-2\left( \dfrac{x}{5} \right)\left( 3y \right)+{{\left( 3y \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{5}-3y \right)}^{2}}=\dfrac{{{x}^{2}}}{25}-\dfrac{6xy}{5}+9{{y}^{2}} \\
\end{align}$
(b) ${{\left( 11x+0.2y \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}''$.
Here a=11x and b=0.2y
On putting a=11x and b=0.2y in the above identity, we will get: -
${{\left( 11x+0.2y \right)}^{2}}={{\left( 11x \right)}^{2}}+2\left( 11x \right)\left( 0.2y \right)+{{\left( 0.2y \right)}^{2}}$
$\Rightarrow {{\left( 11x+0.2y \right)}^{2}}=121{{x}^{2}}+4.4xy+0.04{{y}^{2}}$
(c)${{\left( 4a-56 \right)}^{2}}$
To expand the algebraic expression, the identity that can be used is: $''{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}''$ on putting x=4a and y=5b, we will get-
$\begin{align}
& {{\left( 4a-5b \right)}^{2}}={{\left( 4a \right)}^{2}}-2\left( 4a \right)\left( 5b \right)+{{\left( 5b \right)}^{2}} \\
& \Rightarrow {{\left( 4a-5b \right)}^{2}}=16{{a}^{2}}-40ab+25{{b}^{2}} \\
\end{align}$
(d) ${{\left( y-\dfrac{2}{5}x \right)}^{3}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)''$. On putting a=y and b= $\dfrac{2x}{5}$ in the above identity, we will ge$\begin{align}
& \\
& {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{2x}{5} \right)}^{3}}-3y\left( \dfrac{2x}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
& \Rightarrow {{\left( y-\dfrac{2}{5}x \right)}^{3}}={{y}^{3}}-{{\left( \dfrac{8x}{125} \right)}^{3}}-\left( \dfrac{6xy}{5} \right)\left( y-\dfrac{2x}{5} \right) \\
\end{align}$
(e)${{\left( -3a+5b+4c \right)}^{2}}$
To expand this algebraic expression, the identity that can be used is: $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$ . on putting x=-34, y=5b and z=4c in above identity, we will get-
\[\begin{align}
& {{\left( -3a+5b+4c \right)}^{3}}={{\left( -3a \right)}^{2}}+{{\left( 5b \right)}^{2}}+{{\left( 4c \right)}^{2}}+2\left( -3a \right)\left( 5b \right)+2\left( 5b \right)\left( 4c \right)+2\left( -3a \right)\left( 4c \right) \\
& \Rightarrow {{\left( -3a+5b+4c \right)}^{3}}=9{{a}^{2}}+25{{b}^{2}}+16{{c}^{2}}-30ab+40bc-24ac \\
\end{align}\]\[\]
(f) $\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)$
To expand the above algebraic expression, the identity that can be used is $''{{\left( x+y+z \right)}^{3}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx''$. On putting x= $\dfrac{a}{2}$, y=-b and z= $\dfrac{-c}{3}$, we get-
\[\begin{align}
& {{\left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)}^{3}}={{\left( \dfrac{1}{2}a \right)}^{2}}+{{\left( -b \right)}^{2}}+{{\left( -\dfrac{1}{3}c \right)}^{2}}+2\left( \dfrac{1}{2}a \right)\left( -b \right)+2\left( -b \right)\left( -\dfrac{c}{3} \right)+2\left( \dfrac{a}{2} \right)\left( -\dfrac{c}{3} \right) \\
& \Rightarrow \left( \dfrac{1}{2}a-b-\dfrac{1}{3}c \right)=\dfrac{{{a}^{2}}}{4}+{{b}^{2}}+\dfrac{{{c}^{2}}}{9}-ab+\dfrac{2bc}{3}-\dfrac{ac}{3} \\
\end{align}\]
Note: While using the identities do not get confused in the sign. Students generally get confused and make sign mistakes which leads to wrong answers. Such confusion should be avoided and the identities must be memorized correctly.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

