
How do you use the sum or difference identities to find the exact value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\] ?
Answer
496.5k+ views
Hint: Here in this question to find the exact solution of given trigonometric function by using the formula of tangent difference rule defined as \[tan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}\] where A and B are the angles then by using the value of specified angle of trigonometric ratios on simplification, we get the required result.
Complete step-by-step answer:
Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine and tangent of the \[\dfrac{\pi }{6}\] , \[\dfrac{\pi }{4}\] , \[\dfrac{\pi }{3}\] and \[\dfrac{\pi }{2}\] angles and their multiples.
sine addition and difference formula can be defined as:
\[\sin (A + B) = \sin A.\,\cos B + \cos A.\,\sin B\]
\[\sin (A - B) = \sin A.\,\cos B - \cos A.\,\sin B\]
cosine addition and difference formula can be defined as:
\[cos\left( {A + B} \right) = cos\,A.cos\,B - sin\,A.sin\,B\]
\[cos\left( {A - B} \right) = cos\,A.cos\,B + sin\,A.sin\,B\]
Tangent addition and difference formula can be defined as:
\[tan(A + B) = \dfrac{{tanA + tanB}}{{1 - tanA\,tanB}}\]
\[tan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}\]
Consider the given question
\[ \Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{{12}}} \right)\]
Can be written as \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
\[ \Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)\]
Now using the tangent difference formula i.e., \[tan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}\]
Where angle A= \[\dfrac{\pi }{3}\] and B= \[\dfrac{\pi }{4}\] .
Therefore, \[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{tan\left( {\dfrac{\pi }{3}} \right) - tan\left( {\dfrac{\pi }{4}} \right)}}{{1 + tan\left( {\dfrac{\pi }{3}} \right)tan\left( {\dfrac{\pi }{4}} \right)}}\]
Using the value of specified angle of trigonometric tangent ratio ratios is \[tan\left( {\dfrac{\pi }{3}} \right) = \sqrt 3 \] and \[tan\left( {\dfrac{\pi }{4}} \right) = 1\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
Multiply and divide \[\sqrt 3 - 1\] , then
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 3 - 1} \right)}}\]
We know the algebraic formula \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] , then
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\left( {{{\sqrt 3 }^2} - 2 \cdot \sqrt 3 \cdot 1 + {1^2}} \right)}}{{\left( {{{\sqrt 3 }^2} - {1^2}} \right)}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 - 2\sqrt 3 + 1}}{{3 - 1}}\] [ \[\because \,\,{\sqrt 3 ^2} = 3\] ]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{4}{2} - \dfrac{{2\sqrt 3 }}{2}\]
\[\therefore \,\,\,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \]
So, the correct answer is “$2 - \sqrt 3$”.
Note: In trigonometry, for the trigonometry ratios we have sum and difference formula. For the value of trigonometry ratios, we follow the table of trigonometry ratios for the standard angles. The standard angles either in the form of degree or radian the values will be the same there is no alter or change in the values.
Complete step-by-step answer:
Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine and tangent of the \[\dfrac{\pi }{6}\] , \[\dfrac{\pi }{4}\] , \[\dfrac{\pi }{3}\] and \[\dfrac{\pi }{2}\] angles and their multiples.
sine addition and difference formula can be defined as:
\[\sin (A + B) = \sin A.\,\cos B + \cos A.\,\sin B\]
\[\sin (A - B) = \sin A.\,\cos B - \cos A.\,\sin B\]
cosine addition and difference formula can be defined as:
\[cos\left( {A + B} \right) = cos\,A.cos\,B - sin\,A.sin\,B\]
\[cos\left( {A - B} \right) = cos\,A.cos\,B + sin\,A.sin\,B\]
Tangent addition and difference formula can be defined as:
\[tan(A + B) = \dfrac{{tanA + tanB}}{{1 - tanA\,tanB}}\]
\[tan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}\]
Consider the given question
\[ \Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{{12}}} \right)\]
Can be written as \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
\[ \Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)\]
Now using the tangent difference formula i.e., \[tan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}\]
Where angle A= \[\dfrac{\pi }{3}\] and B= \[\dfrac{\pi }{4}\] .
Therefore, \[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{tan\left( {\dfrac{\pi }{3}} \right) - tan\left( {\dfrac{\pi }{4}} \right)}}{{1 + tan\left( {\dfrac{\pi }{3}} \right)tan\left( {\dfrac{\pi }{4}} \right)}}\]
Using the value of specified angle of trigonometric tangent ratio ratios is \[tan\left( {\dfrac{\pi }{3}} \right) = \sqrt 3 \] and \[tan\left( {\dfrac{\pi }{4}} \right) = 1\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
Multiply and divide \[\sqrt 3 - 1\] , then
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 3 - 1} \right)}}\]
We know the algebraic formula \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] , then
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\left( {{{\sqrt 3 }^2} - 2 \cdot \sqrt 3 \cdot 1 + {1^2}} \right)}}{{\left( {{{\sqrt 3 }^2} - {1^2}} \right)}}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 - 2\sqrt 3 + 1}}{{3 - 1}}\] [ \[\because \,\,{\sqrt 3 ^2} = 3\] ]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2}\]
\[ \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{4}{2} - \dfrac{{2\sqrt 3 }}{2}\]
\[\therefore \,\,\,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \]
So, the correct answer is “$2 - \sqrt 3$”.
Note: In trigonometry, for the trigonometry ratios we have sum and difference formula. For the value of trigonometry ratios, we follow the table of trigonometry ratios for the standard angles. The standard angles either in the form of degree or radian the values will be the same there is no alter or change in the values.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
