
How do you use the sum or difference identities to find the exact value of $ \tan \left( \dfrac{23\pi }{12} \right) $ ?
Answer
561.6k+ views
Hint: We know that $ \tan \left( 2\pi -\theta \right)=-\tan \theta $ We can use this formula to solve the above question.
We can see the value of $ \dfrac{23\pi }{12}=2\pi -\dfrac{\pi }{12} $ so if we can calculate the value of $ \tan \left( \dfrac{\pi }{12} \right) $ then we easily can calculate the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ .
Complete step by step answer:
We have find the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ . we know the property of tan x that $ \tan \left( 2\pi -x \right)=-\tan \left( x \right) $
We can write
$ \tan \left( \dfrac{23\pi }{12} \right)=\tan \left( 2\pi -\dfrac{\pi }{12} \right) $
$ \Rightarrow \tan \left( \dfrac{23\pi }{12} \right)=-\tan \dfrac{\pi }{12} $
So now we have to calculate the value of $ \tan \dfrac{\pi }{12} $
We calculate the value by difference identities
We can write $ \tan \dfrac{\pi }{12}=\tan \left( \dfrac{\pi }{4}-\dfrac{\pi }{6} \right) $
We know the formula for $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $
By applying this formula to above equation we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{\pi }{6}}{1+\tan \dfrac{\pi }{4}\tan \dfrac{\pi }{6}} $
We know that the value of $ \tan \dfrac{\pi }{4} $ is 1 and the value of $ \tan \dfrac{\pi }{6} $ is $ \dfrac{1}{\sqrt{3}} $ by replacing these values in the above equation we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+1.\dfrac{1}{\sqrt{3}}} $
By further solving we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $
By multiplying $ \sqrt{3}+1 $ in both denominator and numerator we get
So $ \tan \dfrac{\pi }{12}=\dfrac{4-2\sqrt{3}}{2} $
That gives us $ \tan \dfrac{\pi }{12}=2-\sqrt{3} $
$ \tan \left( \dfrac{23\pi }{12} \right)=-\tan \dfrac{\pi }{12} $
Now we can see that the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ is equal to $ \sqrt{3}-2 $.
Note:
We also can calculate the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ by using sum identities we know the property of tan x that $ \tan \left( \pi +x \right)=\tan x $ . so we can write $ \tan \left( \dfrac{23\pi }{12} \right)=\tan \left( \pi +\dfrac{11\pi }{12} \right)=\tan \left( \dfrac{11\pi }{12} \right) $
Now we have to calculate the value of $ \tan \left( \dfrac{11\pi }{12} \right) $
We can write $ \tan \left( \dfrac{11\pi }{12} \right)=\tan \left( \dfrac{2\pi }{3}+\dfrac{\pi }{4} \right) $
We know the property
$ \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} $
We can see the value of $ \dfrac{23\pi }{12}=2\pi -\dfrac{\pi }{12} $ so if we can calculate the value of $ \tan \left( \dfrac{\pi }{12} \right) $ then we easily can calculate the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ .
Complete step by step answer:
We have find the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ . we know the property of tan x that $ \tan \left( 2\pi -x \right)=-\tan \left( x \right) $
We can write
$ \tan \left( \dfrac{23\pi }{12} \right)=\tan \left( 2\pi -\dfrac{\pi }{12} \right) $
$ \Rightarrow \tan \left( \dfrac{23\pi }{12} \right)=-\tan \dfrac{\pi }{12} $
So now we have to calculate the value of $ \tan \dfrac{\pi }{12} $
We calculate the value by difference identities
We can write $ \tan \dfrac{\pi }{12}=\tan \left( \dfrac{\pi }{4}-\dfrac{\pi }{6} \right) $
We know the formula for $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $
By applying this formula to above equation we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{\pi }{6}}{1+\tan \dfrac{\pi }{4}\tan \dfrac{\pi }{6}} $
We know that the value of $ \tan \dfrac{\pi }{4} $ is 1 and the value of $ \tan \dfrac{\pi }{6} $ is $ \dfrac{1}{\sqrt{3}} $ by replacing these values in the above equation we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+1.\dfrac{1}{\sqrt{3}}} $
By further solving we get
$ \Rightarrow \tan \dfrac{\pi }{12}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $
By multiplying $ \sqrt{3}+1 $ in both denominator and numerator we get
So $ \tan \dfrac{\pi }{12}=\dfrac{4-2\sqrt{3}}{2} $
That gives us $ \tan \dfrac{\pi }{12}=2-\sqrt{3} $
$ \tan \left( \dfrac{23\pi }{12} \right)=-\tan \dfrac{\pi }{12} $
Now we can see that the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ is equal to $ \sqrt{3}-2 $.
Note:
We also can calculate the value of $ \tan \left( \dfrac{23\pi }{12} \right) $ by using sum identities we know the property of tan x that $ \tan \left( \pi +x \right)=\tan x $ . so we can write $ \tan \left( \dfrac{23\pi }{12} \right)=\tan \left( \pi +\dfrac{11\pi }{12} \right)=\tan \left( \dfrac{11\pi }{12} \right) $
Now we have to calculate the value of $ \tan \left( \dfrac{11\pi }{12} \right) $
We can write $ \tan \left( \dfrac{11\pi }{12} \right)=\tan \left( \dfrac{2\pi }{3}+\dfrac{\pi }{4} \right) $
We know the property
$ \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

