
How do you use the Sum and Difference Identity to find the exact value of $ \tan {345^ \circ } $.
Answer
549.9k+ views
Hint: In order to solve this question ,split $ \tan {345^ \circ } $ in to sum of angles as $ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $ . Now apply the formula of sum of angles of tangent $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ considering $ A $ as $ 30 $ and $ B $ as $ 315 $ .The value of $ \tan (315) $ can be find by making this a special ang as $ \tan (270 + 45) $ which is equal to $ - \tan 45 $ as tangent is always negative in 4th quadrant .Simplifying further the formula your will get your required result.
Complete step-by-step answer:
In order the find the exact value of $ \tan {345^ \circ } $ , we have to find the two angles whose either Sum or difference is $ {345^ \circ } $
We only know the exact value of tangent at angles $ 0,{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ .
Now have to find such a combination of the above angles with $ {345^ \circ } $ ,so that the sum or difference is a special angle .
If we subtract $ 345 $ with $ 30 $ ,we get $ 345 - 30 = 315 $ and as we know the value of $ 315 $ can be found by $ \tan (270 + 45) $ .
$ \tan (270 + 45) $ is an angle which is in the 4th quadrant .
$ \tan (315) = \tan (270 + 45) $
Note that $ \tan (270 + \theta ) = - \tan (\theta ) $ as tangent is always negative in the 4th quadrant. So,
\[
\tan (315) = \tan (270 + 45) \\
= - \tan ({45^ \circ }) \\
= - 1 \;
\]
\[\tan (315) = - 1\]--------(1)
So, we can use
$ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $
Using formula $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ ,
$
\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) \\
= \dfrac{{\tan {{30}^ \circ } + \tan {{315}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{315}^ \circ }}} \;
$
As we know $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ and from equation (1) \[\tan (315) = - 1\],our equation becomes
$
= \dfrac{{\dfrac{1}{{\sqrt 3 }} + \left( { - 1} \right)}}{{1 - \left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( { - 1} \right)}} \\
= \dfrac{{\dfrac{1}{{\sqrt 3 }} - 1}}{{1 + \dfrac{1}{{\sqrt 3 }}}} \\
= \dfrac{{\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}} \\
= \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \;
$
To remove the square term from the denominator ,multiply and divide with $ \left( {\sqrt 3 - 1} \right) $
$ = \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \times \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}} $
Using formula $ (a - b)(a + b) = {a^2} - {b^2} $
$
= \dfrac{{\sqrt 3 - 1 - 3 + \sqrt 3 }}{{3 - 1}} \\
= \dfrac{{2\sqrt 3 - 4}}{2} \\
= \sqrt 3 - 2 \;
$
$ \therefore \tan {345^ \circ } = \sqrt 3 - 2 $
Therefore, the exact value of $ \tan {345^ \circ } $ is equal to $ \sqrt 3 - 2 $
So, the correct answer is “ $ \sqrt 3 - 2 $ ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in quadrant 1 and 3.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $
$ (a - b)(a + b) = {a^2} - {b^2} $
Complete step-by-step answer:
In order the find the exact value of $ \tan {345^ \circ } $ , we have to find the two angles whose either Sum or difference is $ {345^ \circ } $
We only know the exact value of tangent at angles $ 0,{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ .
Now have to find such a combination of the above angles with $ {345^ \circ } $ ,so that the sum or difference is a special angle .
If we subtract $ 345 $ with $ 30 $ ,we get $ 345 - 30 = 315 $ and as we know the value of $ 315 $ can be found by $ \tan (270 + 45) $ .
$ \tan (270 + 45) $ is an angle which is in the 4th quadrant .
$ \tan (315) = \tan (270 + 45) $
Note that $ \tan (270 + \theta ) = - \tan (\theta ) $ as tangent is always negative in the 4th quadrant. So,
\[
\tan (315) = \tan (270 + 45) \\
= - \tan ({45^ \circ }) \\
= - 1 \;
\]
\[\tan (315) = - 1\]--------(1)
So, we can use
$ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $
Using formula $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ ,
$
\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) \\
= \dfrac{{\tan {{30}^ \circ } + \tan {{315}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{315}^ \circ }}} \;
$
As we know $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ and from equation (1) \[\tan (315) = - 1\],our equation becomes
$
= \dfrac{{\dfrac{1}{{\sqrt 3 }} + \left( { - 1} \right)}}{{1 - \left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( { - 1} \right)}} \\
= \dfrac{{\dfrac{1}{{\sqrt 3 }} - 1}}{{1 + \dfrac{1}{{\sqrt 3 }}}} \\
= \dfrac{{\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}} \\
= \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \;
$
To remove the square term from the denominator ,multiply and divide with $ \left( {\sqrt 3 - 1} \right) $
$ = \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \times \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}} $
Using formula $ (a - b)(a + b) = {a^2} - {b^2} $
$
= \dfrac{{\sqrt 3 - 1 - 3 + \sqrt 3 }}{{3 - 1}} \\
= \dfrac{{2\sqrt 3 - 4}}{2} \\
= \sqrt 3 - 2 \;
$
$ \therefore \tan {345^ \circ } = \sqrt 3 - 2 $
Therefore, the exact value of $ \tan {345^ \circ } $ is equal to $ \sqrt 3 - 2 $
So, the correct answer is “ $ \sqrt 3 - 2 $ ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in quadrant 1 and 3.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $
$ (a - b)(a + b) = {a^2} - {b^2} $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

