
How do you use the Sum and Difference Identity to find the exact value of $ \tan {345^ \circ } $.
Answer
532.8k+ views
Hint: In order to solve this question ,split $ \tan {345^ \circ } $ in to sum of angles as $ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $ . Now apply the formula of sum of angles of tangent $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ considering $ A $ as $ 30 $ and $ B $ as $ 315 $ .The value of $ \tan (315) $ can be find by making this a special ang as $ \tan (270 + 45) $ which is equal to $ - \tan 45 $ as tangent is always negative in 4th quadrant .Simplifying further the formula your will get your required result.
Complete step-by-step answer:
In order the find the exact value of $ \tan {345^ \circ } $ , we have to find the two angles whose either Sum or difference is $ {345^ \circ } $
We only know the exact value of tangent at angles $ 0,{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ .
Now have to find such a combination of the above angles with $ {345^ \circ } $ ,so that the sum or difference is a special angle .
If we subtract $ 345 $ with $ 30 $ ,we get $ 345 - 30 = 315 $ and as we know the value of $ 315 $ can be found by $ \tan (270 + 45) $ .
$ \tan (270 + 45) $ is an angle which is in the 4th quadrant .
$ \tan (315) = \tan (270 + 45) $
Note that $ \tan (270 + \theta ) = - \tan (\theta ) $ as tangent is always negative in the 4th quadrant. So,
\[
\tan (315) = \tan (270 + 45) \\
= - \tan ({45^ \circ }) \\
= - 1 \;
\]
\[\tan (315) = - 1\]--------(1)
So, we can use
$ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $
Using formula $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ ,
$
\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) \\
= \dfrac{{\tan {{30}^ \circ } + \tan {{315}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{315}^ \circ }}} \;
$
As we know $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ and from equation (1) \[\tan (315) = - 1\],our equation becomes
$
= \dfrac{{\dfrac{1}{{\sqrt 3 }} + \left( { - 1} \right)}}{{1 - \left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( { - 1} \right)}} \\
= \dfrac{{\dfrac{1}{{\sqrt 3 }} - 1}}{{1 + \dfrac{1}{{\sqrt 3 }}}} \\
= \dfrac{{\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}} \\
= \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \;
$
To remove the square term from the denominator ,multiply and divide with $ \left( {\sqrt 3 - 1} \right) $
$ = \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \times \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}} $
Using formula $ (a - b)(a + b) = {a^2} - {b^2} $
$
= \dfrac{{\sqrt 3 - 1 - 3 + \sqrt 3 }}{{3 - 1}} \\
= \dfrac{{2\sqrt 3 - 4}}{2} \\
= \sqrt 3 - 2 \;
$
$ \therefore \tan {345^ \circ } = \sqrt 3 - 2 $
Therefore, the exact value of $ \tan {345^ \circ } $ is equal to $ \sqrt 3 - 2 $
So, the correct answer is “ $ \sqrt 3 - 2 $ ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in quadrant 1 and 3.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $
$ (a - b)(a + b) = {a^2} - {b^2} $
Complete step-by-step answer:
In order the find the exact value of $ \tan {345^ \circ } $ , we have to find the two angles whose either Sum or difference is $ {345^ \circ } $
We only know the exact value of tangent at angles $ 0,{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ .
Now have to find such a combination of the above angles with $ {345^ \circ } $ ,so that the sum or difference is a special angle .
If we subtract $ 345 $ with $ 30 $ ,we get $ 345 - 30 = 315 $ and as we know the value of $ 315 $ can be found by $ \tan (270 + 45) $ .
$ \tan (270 + 45) $ is an angle which is in the 4th quadrant .
$ \tan (315) = \tan (270 + 45) $
Note that $ \tan (270 + \theta ) = - \tan (\theta ) $ as tangent is always negative in the 4th quadrant. So,
\[
\tan (315) = \tan (270 + 45) \\
= - \tan ({45^ \circ }) \\
= - 1 \;
\]
\[\tan (315) = - 1\]--------(1)
So, we can use
$ \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) $
Using formula $ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $ ,
$
\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) \\
= \dfrac{{\tan {{30}^ \circ } + \tan {{315}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{315}^ \circ }}} \;
$
As we know $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ and from equation (1) \[\tan (315) = - 1\],our equation becomes
$
= \dfrac{{\dfrac{1}{{\sqrt 3 }} + \left( { - 1} \right)}}{{1 - \left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( { - 1} \right)}} \\
= \dfrac{{\dfrac{1}{{\sqrt 3 }} - 1}}{{1 + \dfrac{1}{{\sqrt 3 }}}} \\
= \dfrac{{\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}} \\
= \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \;
$
To remove the square term from the denominator ,multiply and divide with $ \left( {\sqrt 3 - 1} \right) $
$ = \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \times \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}} $
Using formula $ (a - b)(a + b) = {a^2} - {b^2} $
$
= \dfrac{{\sqrt 3 - 1 - 3 + \sqrt 3 }}{{3 - 1}} \\
= \dfrac{{2\sqrt 3 - 4}}{2} \\
= \sqrt 3 - 2 \;
$
$ \therefore \tan {345^ \circ } = \sqrt 3 - 2 $
Therefore, the exact value of $ \tan {345^ \circ } $ is equal to $ \sqrt 3 - 2 $
So, the correct answer is “ $ \sqrt 3 - 2 $ ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in quadrant 1 and 3.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} $
$ (a - b)(a + b) = {a^2} - {b^2} $
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

