
How do you use the rational roots theorem to find all possible zeros of ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$?
Answer
537k+ views
Hint: We factor the given equation with the help of vanishing method. In this method we find a number $a$ such that for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. We assume $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ and take the value of $a$ as 5.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

