
How do you use the rational roots theorem to find all possible zeros of ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$?
Answer
474.9k+ views
Hint: We factor the given equation with the help of vanishing method. In this method we find a number $a$ such that for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. We assume $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ and take the value of $a$ as 5.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations
