
How do you use the rational roots theorem to find all possible zeros of ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$?
Answer
522k+ views
Hint: We factor the given equation with the help of vanishing method. In this method we find a number $a$ such that for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. We assume $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ and take the value of $a$ as 5.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Complete step by step solution:
We find the value of $x=a$ for which the function \[f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=0\].
We take $x=a=5$.
We can see \[f\left( 5 \right)={{5}^{4}}-5\times {{5}^{3}}-5\times {{5}^{2}}+23\times 5+10=-125+115+10=0\].
So, the root of the $f\left( x \right)={{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ will be the function $\left( x-5 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
We can now divide the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ by $\left( x-5 \right)$.
\[x-5\overset{{{x}^{3}}-5x-2}{\overline{\left){\begin{align}
& {{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10 \\
& \underline{{{x}^{4}}-5{{x}^{3}}} \\
& -5{{x}^{2}}+23x \\
& \underline{-5{{x}^{2}}+25x} \\
& -2x+10 \\
& \underline{-2x+10} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( {{x}^{3}}-5x-2 \right)$.
We again use the same process and take $x=a=-2$.
So, the root of the $f\left( x \right)={{x}^{3}}-5x-2$ will be the function $\left( x+2 \right)$.
\[x+2\overset{{{x}^{2}}-2x-1}{\overline{\left){\begin{align}
& {{x}^{3}}-5x-2 \\
& \underline{{{x}^{3}}+2{{x}^{3}}} \\
& -2{{x}^{2}}-5x-2 \\
& \underline{-2{{x}^{2}}-4x} \\
& -x-2 \\
& \underline{-x-2} \\
& 0 \\
\end{align}}\right.}}\]
Now we have ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10=\left( x-5 \right)\left( x+2 \right)\left( {{x}^{2}}-2x-1 \right)$.
We now use quadratic form to find roots for $\left( {{x}^{2}}-2x-1 \right)$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-2x-1=0$. The values of a, b, c is $1,-2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times \left( -1 \right)\times 1}}{2\times 1}=\dfrac{2\pm \sqrt{8}}{2}=1\pm \sqrt{2}\]
Therefore, the zeroes of the polynomial ${{x}^{4}}-5{{x}^{3}}-5{{x}^{2}}+23x+10$ are \[\left( 1\pm \sqrt{2} \right),-2,5\].
Note: We need to remember that the highest value of the indices for the polynomial decides the number of roots for the polynomial. The number of irrational roots will always be in even number of times if the coefficients of the polynomial are rational.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

