
How do you use the power reducing formulas to rewrite the expression \[{\cos ^4}x\] in terms of the first power of cosine?
Answer
544.5k+ views
Hint:We can solve this using the cosine double angle formula. That is we know the formula \[\cos (2x) = 2{\cos ^2}x - 1\]. We also use the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
We know that \[{\cos ^4}x = {(\cos x)^4}\]. It can be written as \[{(\cos x)^4} = {({\cos ^2}x)^2}\].
Now we need to express this in terms of the first power of cosine.
Complete step by step solution:
Now, we have \[{\cos ^4}x = {(\cos x)^4}\]
It can be rewritten as \[{(\cos x)^4} = {\left( {{{(\cos x)}^2}} \right)^2} = {\left( {{{\cos }^2}x}
\right)^2}{\text{ - - - - - (a)}}\].
We need \[{\cos ^2}x\] value,
We know the cosine double angle formula \[\cos (2x) = 2{\cos ^2}(x) - 1\].
Rearranging we have,
\[ \Rightarrow 2{\cos ^2}(x) - 1 = \cos (2x)\]
Adding 1 on both side we get,
\[ \Rightarrow 2{\cos ^2}(x) = 1 + \cos (2x)\]
Since we need \[{\cos ^2}x\] we divide the whole equation by 2 we get,
\[{\cos ^2}(x) = \dfrac{1}{2}\left( {1 + \cos (2x)} \right){\text{ }} - - - - - (1)\]
Now substituting in the equation (a) we have,
That is \[{\cos ^4}x = {({\cos ^2}x)^2}\]
\[ = {\left( {\dfrac{1}{2}\left( {1 + \cos (2x)} \right)} \right)^2}\]
\[ = \dfrac{1}{4}{\left( {1 + \cos (2x)} \right)^2}\]
Now using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] we will get,
\[ = \dfrac{1}{4}\left( {{1^2} + {{\cos }^2}(2x) + 2\cos (2x)} \right)\]
Since we can see that in the above simplified equation we have \[{\cos ^2}(2x)\]. So we need to convert this into the first power of cosine.
Now from equation (1) we can write that \[{\cos ^2}(2x) = \dfrac{1}{2}\left( {1 + \cos (4x)} \right)\], that is multiply 2 with the angels.
Substituting in above equation we get,
\[ = \dfrac{1}{4}\left( {1 + \left( {\dfrac{1}{2}\left( {1 + \cos (4x)} \right)} \right) + 2\cos (2x)}
\right)\]
Multiplying \[\dfrac{1}{4}\] inside the brackets we have,
\[ = \left( {\dfrac{1}{4} + \left( {\dfrac{1}{8}\left( {1 + \cos (4x)} \right)} \right) + 2\dfrac{1}{4}\cos
(2x)} \right)\]
Taking \[\dfrac{1}{8}\]as common we will get,
\[ = \dfrac{1}{8}\left( {2 + \left( {1 + \cos (4x)} \right) + 4\cos (2x)} \right)\] is the required answer.
That is \[{\cos ^4}x = \dfrac{1}{8}\left( {3 + \cos (4x) + 4\cos (2x)} \right)\]
Note: As we can see that we have a large calculation part, so we need to be careful. Remember all the cosine double angle formula that is \[\cos (2x) = 2{\cos ^2}x - 1\], \[\cos (2x) = {\cos ^2}x - {\sin^2}x\] and \[\cos (2x) = 1 - 2{\sin ^2}x\]. We simplify the given equation until we only have first power of cosine in the simplified equation.
We know that \[{\cos ^4}x = {(\cos x)^4}\]. It can be written as \[{(\cos x)^4} = {({\cos ^2}x)^2}\].
Now we need to express this in terms of the first power of cosine.
Complete step by step solution:
Now, we have \[{\cos ^4}x = {(\cos x)^4}\]
It can be rewritten as \[{(\cos x)^4} = {\left( {{{(\cos x)}^2}} \right)^2} = {\left( {{{\cos }^2}x}
\right)^2}{\text{ - - - - - (a)}}\].
We need \[{\cos ^2}x\] value,
We know the cosine double angle formula \[\cos (2x) = 2{\cos ^2}(x) - 1\].
Rearranging we have,
\[ \Rightarrow 2{\cos ^2}(x) - 1 = \cos (2x)\]
Adding 1 on both side we get,
\[ \Rightarrow 2{\cos ^2}(x) = 1 + \cos (2x)\]
Since we need \[{\cos ^2}x\] we divide the whole equation by 2 we get,
\[{\cos ^2}(x) = \dfrac{1}{2}\left( {1 + \cos (2x)} \right){\text{ }} - - - - - (1)\]
Now substituting in the equation (a) we have,
That is \[{\cos ^4}x = {({\cos ^2}x)^2}\]
\[ = {\left( {\dfrac{1}{2}\left( {1 + \cos (2x)} \right)} \right)^2}\]
\[ = \dfrac{1}{4}{\left( {1 + \cos (2x)} \right)^2}\]
Now using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] we will get,
\[ = \dfrac{1}{4}\left( {{1^2} + {{\cos }^2}(2x) + 2\cos (2x)} \right)\]
Since we can see that in the above simplified equation we have \[{\cos ^2}(2x)\]. So we need to convert this into the first power of cosine.
Now from equation (1) we can write that \[{\cos ^2}(2x) = \dfrac{1}{2}\left( {1 + \cos (4x)} \right)\], that is multiply 2 with the angels.
Substituting in above equation we get,
\[ = \dfrac{1}{4}\left( {1 + \left( {\dfrac{1}{2}\left( {1 + \cos (4x)} \right)} \right) + 2\cos (2x)}
\right)\]
Multiplying \[\dfrac{1}{4}\] inside the brackets we have,
\[ = \left( {\dfrac{1}{4} + \left( {\dfrac{1}{8}\left( {1 + \cos (4x)} \right)} \right) + 2\dfrac{1}{4}\cos
(2x)} \right)\]
Taking \[\dfrac{1}{8}\]as common we will get,
\[ = \dfrac{1}{8}\left( {2 + \left( {1 + \cos (4x)} \right) + 4\cos (2x)} \right)\] is the required answer.
That is \[{\cos ^4}x = \dfrac{1}{8}\left( {3 + \cos (4x) + 4\cos (2x)} \right)\]
Note: As we can see that we have a large calculation part, so we need to be careful. Remember all the cosine double angle formula that is \[\cos (2x) = 2{\cos ^2}x - 1\], \[\cos (2x) = {\cos ^2}x - {\sin^2}x\] and \[\cos (2x) = 1 - 2{\sin ^2}x\]. We simplify the given equation until we only have first power of cosine in the simplified equation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

