
how do you use the binomial theorem to find the value of \[{{999}^{3}}\]?
Answer
558.3k+ views
Hint: The binomial theorem describes the algebraic expansion of powers of a binomial. It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are nonnegative integers with \[b+c=n\], and the coefficient a of each term is a specific positive integer depending on n and b. According to the theorem, it is possible to expand the polynomial
\[{{\left( a+b \right)}^{n}}\]in the form \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\] where \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\].
Complete step by step answer:
As per the given question, we have to find the value of an expression using the binomial theorem. Here, we have to find the value of \[{{999}^{3}}\] using a binomial theorem.
We can write \[999=1000-1={{10}^{3}}-1\]. On substituting this value in \[{{999}^{3}}\] we can rewrite it as
\[\Rightarrow {{999}^{3}}={{\left( {{10}^{3}}-1 \right)}^{3}}\]
Now compare \[{{\left( {{10}^{3}}-1 \right)}^{3}}\] with \[{{\left( a+b \right)}^{n}}\].
On comparing we get \[a={{10}^{3}},b=-1,n=3\]. Now we expand the polynomial using the binomial theorem.
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\sum\limits_{k=0}^{3}{\left( \begin{matrix}
3 \\
k \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-k}}{{\left( -1 \right)}^{k}}}\]
Now we expand the summation. Then we get,
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-0}}{{\left( -1 \right)}^{0}}+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-1}}{{\left( -1 \right)}^{1}}+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-2}}{{\left( -1 \right)}^{2}}+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-3}}{{\left( -1 \right)}^{3}}\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3}}\left( 1 \right)+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{2}}\left( -1 \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{1}}\left( 1 \right)+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{0}}\left( -1 \right)\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)\left( {{10}^{9}} \right)\left( 1 \right)+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)\left( {{10}^{6}} \right)\left( -1 \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)\left( {{10}^{3}} \right)\left( 1 \right)+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)\left( 1 \right)\left( -1 \right)\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)\left( {{10}^{9}} \right)-\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)\left( {{10}^{6}} \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)\left( {{10}^{3}} \right)-\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)\left( 1 \right)\]
We know that \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\] . From this the above values become \[\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)=1,\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)=3,\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)=3,\] and \[\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)=1\]. On substituting these values in the equation. The equation becomes
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=\left( 1 \right)\left( {{10}^{9}} \right)-\left( 3 \right)\left( {{10}^{6}} \right)+\left( 3 \right)\left( {{10}^{3}} \right)-\left( 1 \right)\left( 1 \right)\]
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=1000000000-3000000+3000-1\]
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=997002999\]
Therefore, the value of the given value \[{{999}^{3}}\] is 997002999.
Note:
In order to solve such types of questions, we need to have enough knowledge of the binomial theorem and its expansions. In the above way, we can find expansions of many functions and also find the values of complex polynomial functions easily. While calculating \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)\] calculate the factorials correctly without any mistakes. The binomial theorem helps us to find the value of the polynomials easily. We must avoid calculation mistakes to get the correct result or solution.
\[{{\left( a+b \right)}^{n}}\]in the form \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\] where \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\].
Complete step by step answer:
As per the given question, we have to find the value of an expression using the binomial theorem. Here, we have to find the value of \[{{999}^{3}}\] using a binomial theorem.
We can write \[999=1000-1={{10}^{3}}-1\]. On substituting this value in \[{{999}^{3}}\] we can rewrite it as
\[\Rightarrow {{999}^{3}}={{\left( {{10}^{3}}-1 \right)}^{3}}\]
Now compare \[{{\left( {{10}^{3}}-1 \right)}^{3}}\] with \[{{\left( a+b \right)}^{n}}\].
On comparing we get \[a={{10}^{3}},b=-1,n=3\]. Now we expand the polynomial using the binomial theorem.
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\sum\limits_{k=0}^{3}{\left( \begin{matrix}
3 \\
k \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-k}}{{\left( -1 \right)}^{k}}}\]
Now we expand the summation. Then we get,
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-0}}{{\left( -1 \right)}^{0}}+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-1}}{{\left( -1 \right)}^{1}}+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-2}}{{\left( -1 \right)}^{2}}+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3-3}}{{\left( -1 \right)}^{3}}\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{3}}\left( 1 \right)+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{2}}\left( -1 \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{1}}\left( 1 \right)+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right){{\left( {{10}^{3}} \right)}^{0}}\left( -1 \right)\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)\left( {{10}^{9}} \right)\left( 1 \right)+\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)\left( {{10}^{6}} \right)\left( -1 \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)\left( {{10}^{3}} \right)\left( 1 \right)+\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)\left( 1 \right)\left( -1 \right)\]
\[\Rightarrow \]\[{{\left( {{10}^{3}}-1 \right)}^{3}}=\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)\left( {{10}^{9}} \right)-\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)\left( {{10}^{6}} \right)+\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)\left( {{10}^{3}} \right)-\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)\left( 1 \right)\]
We know that \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\] . From this the above values become \[\left( \begin{matrix}
3 \\
0 \\
\end{matrix} \right)=1,\left( \begin{matrix}
3 \\
1 \\
\end{matrix} \right)=3,\left( \begin{matrix}
3 \\
2 \\
\end{matrix} \right)=3,\] and \[\left( \begin{matrix}
3 \\
3 \\
\end{matrix} \right)=1\]. On substituting these values in the equation. The equation becomes
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=\left( 1 \right)\left( {{10}^{9}} \right)-\left( 3 \right)\left( {{10}^{6}} \right)+\left( 3 \right)\left( {{10}^{3}} \right)-\left( 1 \right)\left( 1 \right)\]
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=1000000000-3000000+3000-1\]
\[\Rightarrow {{\left( {{10}^{3}}-1 \right)}^{3}}=997002999\]
Therefore, the value of the given value \[{{999}^{3}}\] is 997002999.
Note:
In order to solve such types of questions, we need to have enough knowledge of the binomial theorem and its expansions. In the above way, we can find expansions of many functions and also find the values of complex polynomial functions easily. While calculating \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)\] calculate the factorials correctly without any mistakes. The binomial theorem helps us to find the value of the polynomials easily. We must avoid calculation mistakes to get the correct result or solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

